CONTENTS

5.6 Summary
5.7 Projects and Problems

6 Context-Based Compression
6.1 Overview
6.2 Introduction
6.3 Prediction with Partial Match (ppm)
6.3.1 The Basic Algorithm
6.3.2 The Escape Symbol
6.3.3 Length of Context
6.3.4 The Exclusion Principle
6.4 The Burrows-Wheeler Transform
6.4.1 Move-to-Front Coding
6.5 Associative Coder of Buyanovsky (ACB)
6.6 Dynamic Markov Compression
6.7 Summary
6.8 Projects and Problems

7 Lossless Image Compression
7.1 Overview
7.2 Introduction
7.2.1 The Old JPEG Standard

73 CALIC
74 JPEG-LS
7.5 Multiresolution Approaches
7.5.1 Progressive Image Transmission

7.6 Facsimile Encoding
7.6.1 Run-Length Coding
7.6.2 CCITT Group 3 and 4—Recommendations T.4 and T.6
7.6.3 JBIG
7.6.4 JBIG2—T.88
7.7 MRC—T.44
7.8 Summary
7.9 Projects and Problems

8 Mathematical Preliminaries for Lossy Coding
8.1 Overview
8.2 Introduction
8.3 Distortion Criteria
8.3.1 The Human Visual System
8.3.2 Auditory Perception
8.4 Information Theory Revisited 4
8.4.1 Conditional Entropy
8.4.2 Average Mutual Information
8.4.3 Differential Entropy

138
139

141
141
141
143
143
149
150
151
152
156
157
158
160
161

163
163
163
164
166
170
172
173
178
179
180
183
189
190
193
193

195
195
195
197
199
200
201
202
204
205

10

8.5
8.6

8.7
8.8

Rate Distortion Theory %
Models

8.6.1 Probability Models
8.6.2 Linear System Models
8.6.3 Physical Models
Summary

Projects and Problems

Scalar Quantization

9.1
9.2
9.3
9.4
9.5

9.6

9.7

9.8
9.9

Overview

Introduction

The Quantization Problem

Uniform Quantizer

Adaptive Quantization

9.5.1 Forward Adaptive Quantization
9.5.2 Backward Adaptive Quantization
Nonuniform Quantization

9.6.1 pdf-Optimized Quantization

9.6.2 Companded Quantization
Entropy-Coded Quantization

9.7.1 Entropy Coding of Lloyd-Max Quantizer Outputs
9.7.2 Entropy-Constrained Quantization %
9.7.3 High-Rate Optimum Quantization ¥
Summary

Projects and Problems

Vector Quantization

10.1
10.2
10.3
10.4

10.5

10.6

10.7

Overview

Introduction

Advantages of Vector Quantization over Scalar Quantization
The Linde-Buzo-Gray Algorithm

10.4.1 Initializing the LBG Algorithm

10.4.2 The Empty Cell Problem

10.4.3 Use of LBG for Image Compression
Tree-Structured Vector Quantizers

10.5.1 Design of Tree-Structured Vector Quantizers
10.5.2 Pruned Tree-Structured Vector Quantizers
Structured Vector Quantizers

10.6.1 Pyramid Vector Quantization

10.6.2 Polar and Spherical Vector Quantizers

10.6.3 Lattice Vector Quantizers

Variations on the Theme

10.7.1 Gain-Shape Vector Quantization

10.7.2 Mean-Removed Vector Quantization

CONTENTS

208
215
216
218
223
224
224

227
227
227
228
233
244
244
246
253
253
257
264
265
265
266
269
270

273
273
273
276
282
287
294
294
299
302
303
303
305
306
307
311
311
312

CONTENTS

10.8
10.9
10.10

10.7.3 Classified Vector Quantization
10.7.4 Multistage Vector Quantization
10.7.5 Adaptive Vector Quantization
Trellis-Coded Quantization

Summary

Projects and Problems

11 Differential Encoding

111
11.2
11.3
11.4
11.5

11.6

11.7

11.8
119
11.10

Overview

Introduction

The Basic Algorithm

Prediction in DPCM

Adaptive DPCM

11.5.1 Adaptive Quantization in DPCM

11.5.2 Adaptive Prediction in DPCM

Delta Modulation

11.6.1 Constant Factor Adaptive Delta Modulation (CFDM)
11.6.2 Continuously Variable Slope Delta Modulation
Speech Coding

11.7.1 G.726

Image Coding

Summary

Projects and Problems

12 Mathematical Preliminaries for Transforms, Subbands, and Wavelets

12.1
12.2
12.3

12.4
12.5

12.6

Overview

Introduction

Vector Spaces

12.3.1 Dot or Inner Product

12.3.2 Vector Space

12.3.3 Subspace

12.3.4 Basis

12.3.5 Inner Product—Formal Definition
12.3.6 Orthogonal and Orthonormal Sets
Fourier Series

Fourier Transform

12.5.1 Parseval’s Theorem

12.5.2 Modulation Property

12.5.3 Convolution Theorem

Linear Systems

12.6.1 Time Invariance

12.6.2 Transfer Function

12.6.3 Impulse Response

12.6.4 Filter

xi

313
313
315
316
321
322

325
325
325
328
332
337
338
339
342
343
345
345
347
349
351
352

355
355
355
356
357
357
359
360
361
361
362
365
366
366
367
368
368
368
369
371

xii CONTENTS
12.7 Sampling 372
12.7.1 Ideal Sampling—Frequency Domain View 373

12.7.2 Ideal Sampling—Time Domain View 375

12.8 Discrete Fourier Transform 376
129 Z-Transform 378
12.9.1 Tabular Method 381

12.9.2 Partial Fraction Expansion 382

12.9.3 Long Division 386

12.9.4 Z-Transform Properties 387

12.9.5 Discrete Convolution 387

12.10 Summary 389
12.11 Projects and Problems 390
13 Transform Coding 391
13.1 Overview 391
13.2 Introduction 391
13.3 The Transform 396
13.4 Transforms of Interest 400
13.4.1 Karhunen-Loéve Transform 401

13.4.2 Discrete Cosine Transform 402

13.4.3 Discrete Sine Transform 404

13.44 Discrete Walsh-Hadamard Transform 404

13.5 Quantization and Coding of Transform Coefficients 407
3.6 Application to Image Compression—JPEG 410
13.6.1 The Transform 410

13.6.2 Quantization 411

13.6.3 Coding 413

13.7 Application to Audio Compression—the MDCT 416
13.8 Summary 419
139 Projects and Problems 421
14 Subband Coding 423
14.1 Overview 423
14.2 Introduction 423
143 Filters 428
14.3.1 Some Filters Used in Subband Coding 432

144 The Basic Subband Coding Algorithm 436
14.4.1 Analysis 436

14.4.2 Quantization and Coding 437

14.43 Synthesis 437

14.5 Design of Filter Banks % 438
14.5.1 Downsampling % 440

14.5.2 Upsampling ¥ 443

14.6 Perfect Reconstruction Using Two-Channel Filter Banks % 444
14.6.1 Two-Channel PR Quadrature Mirror Filters % 447

14.6.2 Power Symmetric FIR Filters % 449

CONTENTS

14.7
14.8
14.9
14.10
14.11
14.12

14.13
14.14

M-Band QMF Filter Banks %

The Polyphase Decomposition %

Bit Allocation

Application to Speech Coding—G.722
Application to Audio Coding—MPEG Audio
Application to Image Compression

14.12.1 Decomposing an Image

14.12.2 Coding the Subbands

Summary

Projects and Problems

15 Wavelet-Based Compression

15.1
15.2
153
15.4
15.5

15.6
15.7
15.8
15.9
15.10
15.11

Overview

Introduction

Wavelets

Multiresolution Analysis and the Scaling Function
Implementation Using Filters

15.5.1 Scaling and Wavelet Coefficients
15.5.2 Families of Wavelets

Image Compression

Embedded Zerotree Coder

Set Partitioning in Hierarchical Trees
JPEG 2000

Summary

Projects and Problems

16 Audio Coding

16.1
16.2

16.3

16.4

16.5

16.6
16.7

Overview

Introduction

16.2.1 Spectral Masking
16.2.2 Temporal Masking
16.2.3 Psychoacoustic Model
MPEG Audio Coding

16.3.1 Layer I Coding

16.3.2 Layer II Coding

16.3.3 Layer Il Coding—mp3
MPEG Advanced Audio Coding
16.4.1 MPEG-2 AAC

16.4.2 MPEG-4 AAC

Dolby AC3 (Dolby Digital)
16.5.1 Bit Allocation

Other Standards

Summary

xiii

451
454
459
461
462
463
465
467
470
471

473
473
473
476
480
486
488
491
494
497
505
512
513
513

515
515
515
517
517
518
519
520
521
522
527
527
532
533
534
535
536

xiv

17 Analysis/Synthesis and Analysis by Synthesis Schemes

17.1
17.2
17.3

17.4
17.5

17.6
17.7

Overview

Introduction

Speech Compression

17.3.1 The Channel Vocoder

CONTENTS

537
537
537
539
539

17.3.2 The Linear Predictive Coder (Government Standard LPC-10) 542

17.33 Code Excited Linear Predicton (CELP)
17.3.4 Sinusoidal Coders

17.3.5 Mixed Excitation Linear Prediction (MELP)
Wideband Speech Compression—ITU-T G.722.2
Image Compression

17.5.1 Fractal Compression

Summary

Projects and Problems

18 Video Compression

18.1
18.2
18.3
18.4
18.5

18.6
18.7
18.8
18.9

18.10

Overview

Introduction

Motion Compensation

Video Signal Representation

ITU-T Recommendation H.261

18.5.1 Motion Compensation

18.5.2 The Loop Filter

18.5.3 The Transform

18.5.4 Quantization and Coding

18.5.5 Rate Control

Model-Based Coding

Asymmetric Applications

The MPEG-1 Video Standard

The MPEG-2 Video Standard—H.262

18.9.1 The Grand Alliance HDTV Proposal
ITU-T Recommendation H.263

18.10.1 Unrestricted Motion Vector Mode

18.10.2 Syntax-Based Arithmetic Coding Mode
18.10.3 Advanced Prediction Mode

18.10.4 PB-frames and Improved PB-frames Mode
18.10.5 Advanced Intra Coding Mode

18.10.6 Deblocking Filter Mode

18.10.7 Reference Picture Selection Mode

18.10.8 Temporal, SNR, and Spatial Scalability Mode
18.10.9 Reference Picture Resampling

18.10.10 Reduced-Resolution Update Mode
18.10.11 Alternative Inter VLC Mode

18.10.12 Modified Quantization Mode

18.10.13 Enhanced Reference Picture Selection Mode

549
552
555
558
559
560
568
569

571
571
571
573
576
582
583
584
586
586
588
588
590
591
594
597
598
600
600
600
600
600
601
601
601
601
602
602
602
603

CONTENTS xv

18.11 ITU-T Recommendation H.264, MPEG-4 Part 10, Advanced Video

Coding 603

18.11.1 Motion-Compensated Prediction 604

18.11.2 The Transform 605

18.11.3 Intra Prediction 605

18.11.4 Quantization 606

18.11.5 Coding 608

18.12 MPEG-4 Part 2 609
18.13 Packet Video 610
18.14 ATM Networks 610
18.14.1 Compression Issues in ATM Networks 611

18.14.2 Compression Algorithms for Packet Video 612

18.15 Summary 613
18.16 Projects and Problems 614

A Probability and Random Processes 615
Al Probability 615
Al.l Frequency of Occurrence 615

Al2 A Measure of Belief 616

A.13 The Axiomatic Approach 618

A2 Random Variables 620
A3 Distribution Functions 621
A4 Expectation 623
A4l Mean 624

A4.2 Second Moment 625

A43 Variance 625

AS Types of Distribution 625
AS. Uniform Distribution 625

AS2 Gaussian Distribution 626

AS3 Laplacian Distribution 626

AS54 Gamma Distribution 626

A6 Stochastic Process 626
A7 Projects and Problems 629

B A Brief Review of Matrix Concepts 631
B.1 A Matrix 631
B.2 Matrix Operations 632

C The Root Lattices 637
Bibliography 639

Index 655

Preface

Within the last decade the use of data compression has become ubiquitous. From mp3 players
whose headphones seem to adorn the ears of most young (and some not so young) people. to
cell phones. to DVDs. to digital television, data compression is an integral part of almost all
information technology. This incorporation of compression into more and more of our lives
also points to a certain degree of maturation of the technology. This maturity is reflected in
the fact that there are fewer differences between this and the previous edition of this book
than there were between the second and first editions. In the second editicn we had added
new techniques that had been developed since the first edition of this book came out. In this
edition our purpose is more to include some important topics, such as audio compression.
that had not been adequately covered in the second edition. During this time the field has
not entirely stood still and we have tried to include information about new developments.
We have added a new chapter on audio compression (including a description of the mp3
algorithm). We have added information on new standards such as the new video coding
standard and the new facsimile standard. We have reorganized some of the material in the
book. collecting together various lossless image compression techniques and standards into
a single chapter. and we have updated a number of chapters. adding information that perhaps
should have been there from the beginning.

All this has vet again enlarged the book. However. the intent remains the same: to provide
an introduction to the art or science of data compression. There is a tutorial description
of most of the popular compression techniques followed by a description of how these
techniques are used for image. speech. text. audio. and video compression.

Given the pace of developments in this area, there are bound to be new ones that are
not reflected in this book. In order to keep you informed of these developments, we will
periodically provide updates at hittp://www.mkp.com.

Avdience

If you are designing hardware or software implementations of compression algorithms. or
need to interact with individuals engaged in such design. or are involved in development
of multimedia applications and have some background in either electrical or computer
engineering. or computer science. this book should be useful to you. We have included a
large number of examples to aid in self-study. We have also included discussion of various
multimedia standards. The intent here is not to provide all the details that may be required
to implement a standard but to provide information that will help you follow and understand
the standards documents.

xviii PREFACE

Course Use

The impetus for writing this book came from the need for a self-contained book that could
be used at the senior/graduate level for a course in data compression in either electrical
engineering, computer engineering, or computer science departments. There are problems
and project ideas after most of the chapters. A solutions manual is available from the
publisher. Also at http://sensin.unl.edu/idc/index.html we provide links to various course
homepages, which can be a valuable source of project ideas and support material.

The material in this book is too much for a one semester course. However. with judicious
use of the starred sections, this book can be tailored to fit a number of compression
courses that emphasize various aspects of compression. If the course emphasis is on lossless
compression, the instructor could cover most of the sections in the tirst seven chapters. Then,
to give a taste of lossy compression, the instructor could cover Sections 1-5 of Chapter 9,
followed by Chapter 13 and its description of JPEG, and Chapter 18, which describes video
compression approaches used in multimedia communications. If the class interest is more
attuned to audio compression, then instead of Chapters 13 and 18, the instructor could cover
Chapters 14 and 16. If the latter option is taken, depending on the background of the students
in the class, Chapter 12 may be assigned as background reading. If the emphasis is to be on
lossy compression, the instructor could cover Chapter 2, the first two sections of Chapter
3, Sections 4 and 6 of Chapter 4 (with a cursory overview of Sections 2 and 3), Chapter 8,
selected parts of Chapter 9, and Chapter 10 through 15. At this point depending on the time
available and the interests of the instructor and the students portions of the remaining three
chapters can be covered. I have always found it useful to assign a term project in which the
students can follow their own interests as a means of covering material that is not covered
in class but is of interest to the student.

Approach

In this book, we cover both lossless and lossy compression techniques with applications to
image. speech, text, audio, and video compression. The various lossless and lossy coding
techniques are introduced with just enough theory to tie things together. The necessary
theory is introduced just before we need it. Therefore. there are three mathematical prelim-
inaries chapters. In each of these chapters. we present the mathematical material needed to
understand and appreciate the techniques that follow.

Although this book is an introductory text. the word /ntroduction may have a different
meaning for different audiences. We have tried to accommodate the needs of ditferent
audiences by taking a dual-track approach. Wherever we telt there was material that could
enhance the understanding of the subject being discussed but could still be skipped without
seriously hindering your understanding of the technique. we marked those sections with a
star («). If you are primarily interested in understanding how the various techniques function,
especially if you are using this book for self-study. we recommend vou skip the starred
sections, at least in a first reading. Readers who require a slightly more theoretical approach
should use the starred sections. Except for the starred sections. we have tried to keep the
mathematics o a minimum.

PREFACE xix

Learning from This Book

I have found that it is easier for me to understand things if I can see examples. Therefore, 1
have relied heavily on examples to explain concepts. You may find it useful to spend more
time with the examples if you have difficulty with some of the concepts.

Compression is still largely an art and to gain proficiency in an art we need to get a “feel”
for the process. We have included software implementations for most of the techniques
discussed in this book. along with a large number of data sets. The software and data sets
can be obtained from fip://ftp.mkp.com/pub/Sayood/. The programs are written in C and have
been tested on a number of platforms. The programs should run under most flavors of UNIX
machines and, with some slight modifications. under other operating systems as well. More
detailed information is contained in the README file in the pub/Savood directory.

You are strongly encouraged to use and modify these programs to work with your
favorite data in order to understand some of the issues involved in compression. A useful and
achievable goal should be the development of your own compression package by the time
you have worked through this book. This would also be a good way to learn the trade-otfs
involved in different approaches. We have tried to give comparisons of techniques wherever
possible; however, different types of data have their own idiosyncrasies. The best way to
know which scheme to use in any given situation is to try them.

Content and Organization

The organization of the chapters is as follows: We introduce the mathematical preliminaries
necessary for understanding lossless compression in Chapter 2: Chapters 3 and 4 are devoted
to coding algorithms, including Huffman coding. arithmetic coding, Golomb-Rice codes.
and Tunstall codes. Chapters 5 and 6 describe many of the popular lossless compression
schemes along with their applications. The schemes include LZW, ppm, BWT. and DMC,
among others. In Chapter 7 we describe a number of lossless image compression algorithms
and their applications in a number of international standards. The standards include the JBIG
standards and various facsimile standards.

Chapter 8 is devoted to providing the mathematical preliminaries for lossy compression.
Quantization is at the heart of most lossy compression schemes. Chapters 9 and 10 are
devoted to the study of quantization. Chapter 9 deals with scalar quantization. and Chapter
10 deals with vector quantization. Chapter 11 deals with differential encoding techniques.
in particular differential pulse code modulation (DPCM) and delta modulation. Included in
this chapter is a discussion of the CCITT G.726 standard.

Chapter 12 is our third mathematical preliminaries chapter. The goal of this chapter is to
provide the mathematical foundation necessary to understand some aspects of the transform.
subband. and wavelet-based technigues that are described in the next three chapters. As in
the case of the previous mathematical preliminaries chapters, not all material covered is
necessary for everyone. We describe the JPEG standard in Chapter 13, the CCITT G.722
international standard in Chapter 14, and EZW. SPIHT. and JPEG 2000 in Chapter I5.

Chapter 16 is devoted to audio compression. We describe the various MPEG audio
compression schemes in this chapter including the scheme popularly known as mpJ3.

xx PREFACE

Chapter 17 covers techniques in which the data to be compressed are analyzed, and a
model for the generation of the data is transmitted to the receiver. The receiver uses this
model to synthesize the data. These analysis/synthesis and analysis by synthesis schemes
include linear predictive schemes used for low-rate speech coding and the fractal compres-
sion technique. We describe the federal government LPC-10 standard. Code-excited linear
prediction (CELP) is a popular example of an analysis by synthesis scheme. We also discuss
three CELP-based standards, the federal standard 1016, the CCITT G.728 international stan-
dard, and the relatively new wideband speech compression standard G.722.2. We have also
included a discussion of the mixed excitation linear prediction (MELP) technique, which is
the new federal standard for speech coding at 2.4 kbps.

Chapter 18 deals with video coding. We describe popular video coding techniques via
description of various international standards. including H.261, H.264, and the various MPEG
standards.

A Personal View

For me, data compression is more than a manipulation of numbers; it is the process of
discovering structures that exist in the data. In the 9th century, the poet Omar Khayyam
wrote

The moving finger writes, and having writ.
moves on; not all thy piety nor wit.
shall lure it back to cancel half a line.
nor all thy tears wash out a word of it.
(The Rubaivat of Omar Khavvam)

To explain these few lines would take volumes. They tap into a common human expe-
rience so that in our mind’s eye. we can reconstruct what the poet was trying to convey
centuries ago. To understand the words we not only need to know the language, we also
need to have a model of reality that is close to that of the poet. The genius of the poet lies
in identifying a model of reality that is so much a part of our humanity that centuries later
and in widely diverse cultures, these few words can evoke volumes.

Data compression is much more limited in its aspirations, and it may be presumptuous to
mention it in the same breath as poetry. But there is much that is similar to both endeavors.
Data compression involves identifying models for the many different types of structures
that exist in different types of data and then using these models, perhaps along with the
perceptual framework in which these data will be used, to obtain a compact representation
of the data. These structures can be in the form of patterns that we can recognize simply
by plotting the data, or they might be statistical structures that require a more mathematical
approach to comprehend.

In The Long Dark Teatime of the Soul by Douglas Adams. the protagonist finds that he
can enter Valhalla (a rather shoddy one) if he tilts his head in a certain way. Appreciating
the structures that exist in data sometimes require us to tilt our heads in a certain way. There
are an infinite number of ways we can tilt our head and, in order not to get a pain in the
neck (carrying our analogy to absurd limits), it would be nice to know some of the ways that

PREFACE xxi

will generally lead to a profitable result. One of the objectives of this book is to provide you
with a frame of reference that can be used for further exploration. I hope this exploration
will provide as much enjoyment for you as it has given to me.

Acknowledgments

It has been a lot of fun writing this book. My task has been made considerably easier and
the end product considerably better because of the help I have received. Acknowledging that
help is itself a pleasure.

The first edition benefitted from the caretul and detailed criticism of Roy Hoffman from
IBM, Glen Langdon from the University of California at Santa Cruz, Debra Lelewer from
California Polytechnic State University, Eve Riskin from the University of Washington,
Ibrahim Sezan from Kodak. and Peter Swaszek from the University of Rhode Island. They
provided detailed comments on all or most of the first edition. Nasir Memon from Polytechnic
University, Victor Ramamoorthy then at S3, Grant Davidson at Dolby Corporation, Hakan
Caglar, who was then at TUBITAK in Istanbul, and Allen Gersho from the University of
California at Santa Barbara reviewed parts of the manuscript.

For the second edition Steve Tate at the University of North Texas, Sheila Horan at
New Mexico State University, Edouard Lamboray at Oerlikon Contraves Group, Steven
Pigeon at the University of Montreal, and Jesse Olvera at Raytheon Systems reviewed the
entire manuscript. Emin Ananim of Bogazi¢i University and Hakan Caglar helped me with
the development of the chapter on wavelets. Mark Fowler provided extensive comments on
Chapters 1215, correcting mistakes of both commission and omission. Tim James, Devajani
Khataniar, and Lance Pérez also read and critiqued parts of the new material in the second
edition. Chloeann Nelson, along with trying to stop me from splitting infinitives, also tried
to make the first two editions of the book more user-friendly.

Since the appearance of the first edition. various readers have sent me their comments
and critiques. I am grateful to all who sent me comments and suggestions. 1 am especially
grateful to Roberto Lopez-Hernandez. Dirk vom Stein. Christopher A. Larrieu, Ren Yih
Wu. Humberto D’Ochoa, Roderick Mills, Mark Elston, and Jeerasuda Keesorth for pointing
out errors and suggesting improvements to the book. I am also grateful to the various
instructors who have sent me their critiques. In particular I would like to thank Bruce
Bomar from the University of Tennessee, Mark Fowler from SUNY Binghamton, Paul Amer
from the University of Delaware, K.R. Rao from the University of Texas at Arlington.
Ralph Wilkerson from the University of Missouri-Rolla, Adam Drozdek from Duquesne
University, Ed Hong and Richard Ladner from the University of Washington, Lars Nyland
from the Colorado School of Mines, Mario Kovac from the University of Zagreb, and Pierre
Jouvelet from the Ecole Superieure des Mines de Paris.

Frazer Williams and Mike Hoffman, from my department at the University of Nebraska,
provided reviews for the first edition of the book. Mike read the new chapters in the second
and third edition in their raw form and provided me with critiques that led to major rewrites.
His insights were always helpful and the book carries more of his imprint than he is perhaps
aware of. It is nice to have friends of his intellectual caliber and generosity. Rob Maher
at Montana State University provided me with an extensive critique of the new chapter on

xxii PREFACE

audio compression pointing out errors in my thinking and gently suggesting corrections. I
thank him for his expertise, his time, and his courtesy.

Rick Adams, Rachel Roumeliotis, and Simon Crump at Morgan Kaufmann had the task
of actually getting the book out. This included the unenviable task of getting me to meet
deadlines. Vytas Statulevicius helped me with LaTex problems that were driving me up the
wall.

Most of the examples in this book were generated in a lab set up by Andy Hadenfeldt.
James Nau helped me extricate myself out of numerous software puddles giving freely of
his time. In my times of panic, he was always just an email or voice mail away.

I would like to thank the various “models™ for the data sets that accompany this book
and were used as examples. The individuals in the images are Sinan Sayood, Sena Sayood,
and Elif Sevuktekin. The female voice belongs to Pat Masek.

This book reflects what I have learned over the years. I have been very fortunate in the
teachers 1 have had. David Farden. now at North Dakota State University, introduced me
to the area of digital communication. Norm Griswold at Texas A&M University introduced
me to the area of data compression. Jerry Gibson, now at University of California at Santa
Barbara was my Ph.D. advisor and helped me get started on my professional career. The
world may not thank him for that, but I certainly do.

I have also learned a lot from my students at the University of Nebraska and Bogazigi
University. Their interest and curiosity forced me to learn and kept me in touch with the
broad field that is data compression today. I learned at least as much from them as they
learned from me.

Much of this learning would not have been possible but for the support I received from
NASA. The late Warner Miller and Pen-Shu Yeh at the Goddard Space Flight Center and
Wayne Whyte at the Lewis Research Center were a source of support and ideas. I am truly
grateful for their helpful guidance, trust, and friendship.

Our two boys, Sena and Sinan, graciously forgave my evenings and weekends at work.
They were tiny (witness the images) when 1 first started writing this book. Soon I will
have to look up when talking to them. “The book™ has been their (sometimes unwanted)
companion through all these years. For their graciousness and for always being such perfect
joys, I thank them.

Above all the person most responsible for the existence of this book is my partner and
closest friend Fiisun. Her support and her friendship gives me the freedom to do things I
would not otherwise even consider. She centers my universe and, as with cvery significant
endeavor that I have undertaken since I met her, this book is at least as much hers as it is
mine.

n the last decade we have been witnessing a transformation—some call it

a revolution—in the way we communicate, and the process is still under

way. This transformation includes the ever-present, ever-growing Internet; the

Lexplosive development of mobile communications; and the ever-increasing
. importance of video communication. Data compression is one of the enabling
technologies for each of these aspects of the multimedia revolution. It would not be practical
to put images, let alone audio and video, on websites if it were not for data compression
algorithms. Cellular phones would not be able to provide communication with increasing
clarity were it not for compression. The advent of digital TV would not be possible without
compression. Data compression, which for a long time was the domain of a relatively small
group of engineers and scientists, is now ubiquitous. Make a long-distance call and you
are using compression. Use your modem, or your fax machine, and you will benefit from
compression. Listen to music on your mp3 player or watch a DVD and you are being
entertained courtesy of compression.

So, what is data compression, and why do we need it? Most of you have heard of JPEG
and MPEG, which are standards for representing images, video, and audio. Data compression
algorithms are used in these standards to reduce the number of bits required to represent
an image or a video sequence or music. In brief, data compression is the art or science
of representing information in a compact form. We create these compact representations
by identifying and using structures that exist in the data. Data can be characters in a text
file, numbers that are samples of speech or image waveforms, or sequences of numbers
that are generated by other processes. The reason we need data compression is that more
and more of the information that we generate and use is in digital form—in the form
of numbers represented by bytes of data. And the number of bytes required to represent
multimedia data can be huge. For example, in order to digitally represent 1 second of
video without compression (using the CCIR 601 format), we need more than 20 megabytes,
or 160 megabits. If we consider the number of seconds in a movie, we can easily see
why we would need compression. To represent 2 minutes of uncompressed CD-quality

2 1 INTRODUCTION

music (44,100 samples per second. 16 bits per sample) requires more than 84 million bits.
Downloading music from a website at these rates would take a long time.

As human activity has a greater and greater impact on our environment, there is an ever-
increasing need for more information about our environment. how it functions, and what we
are doing to it. Various space agencies from around the world, including the European Space
Agency (ESA). the National Acronautics and Space Agency (NASA). the Canadian Space
Agency (CSA). and the Japancese Space Agency (STA). are collaborating on a program to
monitor global change that will generate half a terabyte of data per duy when they are fully
operational. Compare this to the 130 terabytes of data currently stored at the EROS data
center in South Dakota. that is the largest archive for land mass data in the world.

Given the explosive growth of data that needs to be transmitted and stored, why not
focus on developing better transmission and storage technologies? This is happening. but it
is not enough. There have been significant advances that permit larger and larger volumes of
information to be stored and transmitted without using compression. including CD-ROMs,
optical fibers. Asymmetric Digital Subscriber Lines (ADSL). and cable modems. However.:
while it is true that both storage and transmission capacities are steadily increasing with
new technological innovations, as a corollary to Parkinson’s First Law.' it seems that the
need for mass storage and transmission increases at least twice as fast as storage and
transmission capacities improve. Then there are situations in which capacity has not increased
significantly. For example. the amount of information we can transmit over the airwaves
will always be limited by the characteristics of the atmosphere.

An carly example of data compression is Morse code. developed by Samuel Morse in
the mid-19th century. Letters sent by telegraph are encoded with dots and dashes. Morse
noticed that certain letters occurred more often than others. In order to reduce the average
time required to send a message. he assigned shorter sequences to letters that occur more
frequently, such as e (-) and a (- —). and longer sequences to letters that occur less frequently,
such as ¢ (= —-=) and j (- — — —). This idea of using shorter codes for more frequently
occurring characters is used in Huffman coding. which we will describe in Chapter 3.

Where Morse code uses the frequency of occurrence of single characters, a widely used
form of Braille code. which was also developed in the mid-19th century, uses the frequency
of occurrence of words to provide compression [1]. In Braille coding. 2 x 3 arrays of dots
are used to represent text. Different letters can be represented depending on whether the dots
are raised or flat. In Grade 1 Braille. each array of six dots represents a single character.
However, given six dots with two positions for each dot. we can obtain 20, or 64, different
combinations. If we use 26 of these for the different letters, we have 38 combinations left. In
Grade 2 Braille, some of these leftover combinations are used to represent words that occur
frequently. such as “and™ and “for.” One of the combinations is used as a special symbol
indicating that the symbol that follows is a word and not a character, thus allowing a large
number of words to be represented by two arrays of dots. These modifications. along with
contractions of some of the words, result in an average reduction in space, or compression,
of about 20% [1].

! Parkinson's First Law: “Work expands so as to fill the time available.™ in Parkinson’s Law and Other Studies in
Administration. by Cyril Northcote Parkinson. Ballantine Books, New York. 1957.

1.1 Compression Techniques 3

Statistical structure is being used to provide compression in these examples, but that
is not the only kind of structure that exists in the data. There are many other kinds of
structures existing in data of different types that can be exploited for compression. Consider
speech. When we speak, the physical construction of our voice box dictates the kinds of
sounds that we can produce. That is, the mechanics of speech production impose a structure
on speech. Therefore, instead of transmitting the speech itself, we could send information
about the conformation of the voice box. which could be used by the receiver to synthesize
the speech. An adequate amount of information about the conformation of the voice box
can be represented much more compactly than the numbers that are the sampled values of
speech. Therefore, we get compression. This compression approach is being used currently
in a number of applications, including transmission of speech over mobile radios and the
synthetic voice in toys that speak. An early version of this compression approach, called
the vocoder (voice coder), was developed by Homer Dudley at Bell Laboratories in 1936.
The vocoder was demonstrated at the New York World’s Fair in 1939, where it was a
major attraction. We will revisit the vocoder and this approach to compression of speech in
Chapter 17.

These are only a few of the many different types of structures that can be used to obtain
compression. The structure in the data is not the only thing that can be exploited to obtain
compression. We can also make use of the characteristics of the user of the data. Many times,
for example, when transmitting or storing speech and images, the data are intended to be
perceived by a human, and humans have limited perceptual abilities. For example, we cannot
hear the very high frequency sounds that dogs can hear. If something is represented in the
data that cannot be perceived by the user, is there any point in preserving that information?
The answer often is “no.” Therefore. we can make use of the perceptual limitations of
humans to obtain compression by discarding irrelevant information. This approach is used
in a number of compression schemes that we will visit in Chapters 13, 14, and 16.

Before we embark on our study of data compression techniques, let’s take a general look
at the area and define some of the key terms and concepts we will be using in the rest of
the book.

1.1 Compression Techniques

When we speak of a compression technique or compression algorithm.? we are actually
referring to two algorithms. There is the compression algorithm that takes an input X' and
generates a representation X, that requires fewer bits, and there is a reconstruction algorithm
that operates on the compressed representation X to generate the reconstruction 4. These
operations are shown schematically in Figure 1.1. We will follow convention and refer
to both the compression and reconstruction algorithms together to mean the compression
algorithm.

> The word algorithm comes from the name of an early 9th-century Arab mathematician, Al-Khwarizmi, who
wrote a treatise entitled The Compendious Book on Calculation by al-jabr and al-mugabala, in which he explored
(among other things) the solution of various linear and quadratic equations via rules or an “algorithm.” This approach
became known as the method of Al-Khwarizmi. The name was changed to algorimi in Latin, from which we get the word
algorithm. The name of the treatise also gave us the word algebra [2].

4 1 INTRODUCTION

X A

CLVOVVOYOovVoeEvVa CLVUVYOYUVOEVOL
OYTUVKEDEVEALD OYTUVKEDEVEALD
deprvvrac deptvurao
OLoLVOLVOUPLTEV OUGUVOLVIUOTYEY
TAMPUAKED TOMPUAKED

Original Reconstructed

FIGURE 1.1 Compression and reconstruction.

Based on the requirements of reconstruction, data compression schemes can be divided
into two broad classes: lossless compression schemes, in which ¥ is identical to . and
lossy compression schemes, which generally provide much higher compression than lossless
compression but allow ¥ to be different from X.

1.1.1 Lossless Compression

Lossless compression techniques, as their name implies, involve no loss of information. If
data have been losslessly compressed, the original data can be recovered exactly from the
compressed data. Lossless compression is generally used for applications that cannot tolerate
any difference between the original and reconstructed data.

Text compression is an important area for lossless compression. It is very important that
the reconstruction is identical to the text original. as very small ditferences can result in
statements with very different meanings. Consider the sentences “Do 5ot send money™ and
“Do now send money.” A similar argument holds for computer files and for certain types of
data such as bank records.

If data of any kind are to be processed or “enhanced™ later to yield more information. it is
important that the integrity be preserved. For example. suppose we compressed a radiological
image in a lossy fashion. and the difference between the reconstruction ¥ and the original
X was visually undetectable. If this image was later enhanced. the previously undetectable
differences may cause the appearance of artifacts that could seriously mislead the radiologist.
Because the price for this kind of mishap may be a human life. it makes sense to be very
careful about using a compression scheme that generates a reconstruction that is different
from the original.

Data obtained from satellites often are processed later to obtain different numerical
indicators of vegetation. deforestation, and so on. If the reconstructed data are not identical
to the original data, processing may result in “enhancement” of the differences. It may not

1.1 Compression Techniques 5

be possible to go back and obtain the same data over again. Theretore, it is not advisable to
allow for any differences to appear in the compression process.

There are many situations that require compression where we want the reconstruction to
be identical to the original. There are also a number of situations in which it is possible to
relax this requirement in order to get more compression. In these situations we look to lossy
compression techniques.

1.1.2 Lossy Compression

Lossy compression techniques involve some loss of information, and data that have been
compressed using lossy techniques generally cannot be recovered or reconstructed exactly.
In return for accepting this distortion in the reconstruction, we can generally obtain much
higher compression ratios than is possible with lossless compression.

In many applications, this lack of exact reconstruction is not a problem. For example,
when storing or transmitting speech, the exact value of each sample of speech is not
necessary. Depending on the quality required of the reconstructed speech, varying amounts
of loss of information about the value of each sample can be tolerated. If the quality of
the reconstructed speech is to be similar to that heard on the telephone, a significant loss
of information can be tolerated. However, if the reconstructed speech needs to be of the
quality heard on a compact disc, the amount of information loss that can be tolerated is much
lower.

Similarly, when viewing a reconstruction of a video sequence, the fact that the reconstruc-
tion is different from the original is generally not important as long as the differences do not
result in annoying artifacts. Thus, video is generally compressed using lossy compression.

Once we have developed a data compression scheme, we need to be able to measure its
performance. Because of the number of different areas of application, different terms have
been developed to describe and measure the performance.

1.1.3 Measures of Performance

A compression algorithm can be evaluated in a number of different ways. We could measure
the relative complexity of the algorithm, the memory required to implement the algorithm,
how fast the algorithm performs on a given machine, the amount of compression, and how
closely the reconstruction resembles the original. In this book we will mainly be concerned
with the last two criteria. Let us take each one in turn.

A very logical way of measuring how well a compression algorithm compresses a given
set of data is to look at the ratio of the number of bits required to represent the data before
compression to the number of bits required to represent the data after compression. This
ratio is called the compression ratio. Suppose storing an image made up of a square array of
256 x 256 pixels requires 65.536 bytes. The image is compressed and the compressed version
requires 16,384 bytes. We would say that the compression ratio is 4:1. We can also represent
the compression ratio by expressing the reduction in the amount of data required as a
percentage of the size of the original data. In this particular example the compression ratio
calculated in this manner would be 75%.

6 1 INTRODUCTION

Another way of reporting compression performance is to provide the average number
of bits required to represent a single sample. This is generally referred to as the rate. For
example, in the case of the compressed image described above, if we assume 8 bits per byte
(or pixel), the average number of bits per pixel in the compressed representation is 2. Thus,
we would say that the rate is 2 bits per pixel.

In lossy compression, the reconstruction differs from the original data. Theretfore, in
order to determine the efficiency of a compression algorithm, we have to have some way
of quantifying the difference. The difference between the original and the reconstruction is
often called the distortion. (We will describe several measures of distortion in Chapter 8.)
Lossy techniques are generally used for the compression of data that originate as analog
signals, such as speech and video. In compression of speech and video, the final arbiter of
quality is human. Because human responses are difficult to model mathematically, many
approximate measures of distortion are used to determine the quality of the reconstructed
waveforms. We will discuss this topic in more detail in Chapter 8.

Other terms that are also used when talking about differences between the reconstruction
and the original are fidelity and quality. When we say that the fidelity or quality of a
reconstruction is high, we mean that the difference between the reconstruction and the original
is small. Whether this difference is a mathematical difference or a perceptual difference
should be evident from the context.

1.2 Modeling and Coding

While reconstruction requirements may force the decision of whether a compression scheme
is to be lossy or lossless. the exact compression scheme we use will depend on a number of
different factors. Some of the most important factors are the characteristics of the data that
need to be compressed. A compression technique that will work well for the compression
of text may not work well for compressing images. Each application presents a different set
of challenges.

There is a saying attributed to Bobby Knight, the basketball coach at Texas Tech
University: “If the only tool you have is a hammer, you approach every problem as if it were
a nail.” Our intention in this book is to provide you with a large number of tools that you
can use to solve the particular data compression problem. It should be remembered that data
compression, if it is a science at all, is an experimental science. The approach that works
best for a particular application will depend to a large extent on the redundancies inherent
in the data.

The development of data compression algorithms for a variety of data can be divided
into two phases. The first phase is usually referred to as modeling. In this phase we try to
extract information about any redundancy that exists in the data and describe the redundancy
in the form of a model. The second phase is called coding. A description of the model
and a “description” of how the data differ from the model are encoded, generally using a
binary alphabet. The difference between the data and the model is often referred to as the
residual. In the following three examples we will look at three different ways that data can
be modeled. We will then use the model to obtain compression.

1.2 Modeling and Coding 7

Example 1.2.1:

Consider the following sequence of numbers {x,, x5, x5, ... }:

Sl 1|11 y14 (1371501716 |17120 | 21

If we were to transmit or store the binary representations of these numbers, we would need
to use 5 bits per sample. However, by exploiting the structure in the data, we can represent
the sequence using fewer bits. If we plot these data as shown in Figure 1.2, we see that the
data seem to fall on a straight line. A model for the data could therefore be a straight line
given by the equation

X, =n+38 n=12, ...

L]
20 .
e ©
[]
15 . °
[
e e o
10 -
[]
5__
LN LA I RN RN L
2 4 6 9 10

FIGURE 1. 2 A sequence of data valves.

Thus, the structure in the data can be characterized by an equation. To make use of
this structure, let’s examine the difference between the data and the model. The difference
(or residual) is given by the sequence

e,=x,—%, :010-11-101-1-111

The residual sequence consists of only three numbers {—1, 0, 1}. If we assign a code of 00
to —1, a code of 01 to 0, and a code of 10 to 1, we need to use 2 bits to represent each
element of the residual sequence. Therefore, we can obtain compression by transmitting or
storing the parameters of the model and the residual sequence. The encoding can be exact
if the required compression is to be lossless, or approximate if the compression can be
lossy. ¢

8 1 INTRODUCTION

The type of structure or redundancy that existed in these data follows a simple law. Once
we recognize this law, we can make use of the structure to predict the value of each element
in the sequence and then encode the residual. Structure of this type is only one of many
types of structure. Consider the following example.

Example 1.2.2:

Consider the following sequence of numbers:

27 128 |29 | 28 126127 (2928130323436 38

The sequence is plotted in Figure 1.3.

40 —

30 . . .

20—

FIGURE 1.3 A sequence of data valves.

The sequence does not seem to follow a simple law as in the previous case. However,
each value is close to the previous value. Suppose we send the first value, then in place of
subsequent values we send the difference between it and the previous value. The sequence
of transmitted values would be

27|11 —=1) =211

to

172122

(29
[N}

Like the previous example, the number of distinct values has been reduced. Fewer bits are
required to represent each number and compression is achieved. The decoder adds each
received value to the previous decoded value to obtain the reconstruction corresponding

1.2 Modeling and Coding 9

to the received value. Techniques that use the past values of a sequence to predict the
current value and then encode the error in prediction, or residual, are called predictive coding
schemes. We will discuss lossless predictive compression schemes in Chapter 7 and lossy
predictive coding schemes in Chapter 11.

Assuming both encoder and decoder know the model being used. we would still have to
send the value of the first element of the sequence. ¢

A very different type of redundancy is statistical in nature. Often we will encounter
sources- that generate some symbols more often than others. In these situations, it wiil be
advantageous to assign binary codes of different lengths to different symbols.

Example 1.2.3:

Suppose we have the following sequence:
abaravaranbarravbranbfarbfaarbfaaarbaway

which is typical of all sequences generated by a source. Notice that the sequence is made
up of eight different symbols. In order to represent eight symbols, we need to use 3 bits per
symbol. Suppose instead we used the code shown in Table 1.1. Notice that we have assigned
a codeword with only a single bit to the symbol that occurs most often, and correspondingly
longer codewords to symbols that occur less often. If we substitute the codes for each
symbol. we will use 106 bits to encode the entire sequence. As there are 41 symbols in
the sequence, this works out to approximately 2.58 bits per symbol. This means we have
obtained a compression ratio of 1.16:1. We will study how to use statistical redundancy of
this sort in Chapters 3 and 4.

TABLE 1.1 A code with codewords
of varying length.

a 1

n 001

b 01100
S 0100
n 0111
r 000
w 01101
¥ 0101

When dealing with text, along with statistical redundancy, we also see redundancy in
the form of words that repeat often. We can take advantage of this form of redundancy by
constructing a list of these words and then represent them by their position in the list. This
type of compression scheme is called a dictionary compression scheme. We will study these
schemes in Chapter 5.

10 1 INTRODUCTION

Often the structure or redundancy in the data becomes more evident when we look at
groups of symbols. We will look at compression schemes that take advantage of this in
Chapters 4 and 10.

Finally, there will be situations in which it is easier to take advantage of the structure if
we decompose the data into a number of components. We can then study each component
separately and use a model appropriate to that component. We will look at such schemes in.
Chapters 13, 14, and 15.

There are a number of different ways to characterize data. Different characterizations
will lead to different compression schemes. We will study these compression schemes in
the upcoming chapters, and use a number of examples that should help us understand the
relationship between the characterization and the compression scheme.

With the increasing use of compression. there has also been an increasing need for
standards. Standards allow products developed by difterent vendors to communicate. Thus,
we can compress something with products from one vendor and reconstruct it using the
products of a different vendor. The different international standards organizations have-
responded to this need, and a number of standards for various compression applications have
been approved. We will discuss these standards as applications of the various compression
techniques.

Finally, compression is still largely an art, and to gain proficiency in an art you need to
get a feel for the process. To help, we have developed software implementations of most of
the techniques discussed in this book, and also provided the data sets used for developing the
examples in this book. Details on how to obtain these programs and data sets are provided
in the Preface. You should use these programs on your favorite data or on the data sets
provided in order to understand some of the issues involved in compression. We would also
encourage you to write your own software implementations of some of these techniques,
as very often the best way to understand how an algorithm works is to implement the
algorithm.

1.3 Summary

In this chapter we have introduced the subject of data compression. We have provided
some motivation for why we need data compression and defined some of the terminology
we will need in this book. Additional terminology will be introduced as needed. We have
briefly introduced the two major types of compression algorithms: lossless compression
and lossy compression. Lossless compression is used for applications that require an exact
reconstruction of the original data, while lossy compression is used when the user can
tolerate some differences between the original and reconstructed representations of the data.
An important element in the design of data compression algorithms is the modeling of the
data. We have briefly looked at how modeling can help us in obtaining more compact
representations of the data. We have described some of the different ways we can view the
data in order to model it. The more ways we have of looking at the data, the more successful
we will be in developing compression schemes that take full advantage of the structures in
the data.

1.4 Projects and Problems n

1.4 Projects and Problems

Use the compression utility on your computer to compress different files. Study the

effect of the original file size and file type on the ratio of compressed file size to
original file size.

Take a few paragraphs of text from a popular magazine and compress them by remov-
ing all words that are not essential for comprehension. For example, in the sentence
“This is the dog that belongs to my friend,” we can remove the words is, the, that, and
to and still convey the same meaning. Let the ratio of the words removed to the total
number of words in the original text be the measure of redundancy in the text. Repeat
the experiment using paragraphs from a technical journal. Can you make any quanti-
tative statements about the redundancy in the text ohtained from different sources?

Muthemalical Preliminaries for
Lossless Compression

2.1 Overview

he treatment of data compression in this book is not very mathematical. (For a
more mathematical treatment of some of the topics covered in this book,
see [3. 4, 5, 6].) However, we do need some mathematical preliminaries to
appreciate the compression techniques we will discuss. Compression schemes
can be divided into two classes, lossy and lossless. Lossy compression schemes
involve the loss of some information, and data that have been compressed using a lossy
scheme generally cannot be recovered exactly. Lossless schemes compress the data without
loss of information, and the original data can be recovered exactly from the compressed data.
In this chapter. some of the ideas in information theory that provide the framework for the
development of lossless data compression schemes are briefly reviewed. We will also look
at some ways to model the data that lead to efficient coding schemes. We have assumed
some knowledge of probability concepts (see Appendix A for a brief review of probability
and random processes).

2.2 A Brief Introduction to Information Theory

Although the idea of a quantitative measure of information has been around for a while, the
person who pulled everything together into what is now called information theory was Claude
Elwood Shannon [7], an electrical engineer at Bell Labs. Shannon defined a quantity called
self-information. Suppose we have an event A, which is a set of outcomes of some random

14 2 LOSSLESS COMPRESSION

experiment. If P{A) is the probability that the event A will occur, then the self-information
associated with A is given by

i(A) = log, —log, P(A). (2.1)

1
P(A) ~
Note that we have not specified the base of the log function. We will discuss this in more
detail later in the chapter. The use of the logarithm to obtain a measure of information
was not an arbitrary choice as we shall see later in this chapter. But first let’s see if the
use of a logarithm in this context makes sense from an intuitive point of view. Recall
that log(1) = 0, and —log(x) increases as x decreases from one to zero. Therefore, if the
probability of an event is low, the amount of self-information associated with it is high; if
the probability of an event is high, the information associated with it is low. Even if we
ignore the mathematical definition of information and simply use the definition we use in
everyday language, this makes some intuitive sense. The barking of a dog during a burglary
is a high-probability event and, therefore, does not contain too much information. However,
if the dog did not bark during a burglary, this is a low-probability event and contains a lot of
information. (Obviously, Sherlock Holmes understood information theory!)' Although this
equivalence of the mathematical and semantic definitions of information holds true most of
the time, it does not hold all of the time. For example, a totally random string of letters
will contain more information (in the mathematical sense) than a well-thought-out treatise
on information theory.

Another property of this mathematical definition of information that makes intuitive
sense is that the information obtained from the occurrence of two independent events is the
sum of the information obtained from the occurrence of the individual events. Suppose A
and B are two independent events. The self-information associated with the occurrence of
both event A and event B is, by Equation (2.1),

1
i(AB) =1 —_
i(AB) = log, P(AB)

As A and B are independent,
P(AB) = P(A)P(B)

and

1

1
= %8 p) T)
= i(A) +i(B).

The unit of information depends on the base of the log. If we use log base 2, the unit is bits;
if we use log base e, the unit is nats; and if we use log base 10, the unit is hartleys.

! Silver Blaze by Arthur Conan Doyle.

2.2 A Brief Introduction to Information Theory 15

Note that to calculate the information in bits, we need to take the logarithm base 2 of
the probabilities. Because this probably does not appear on your calculator, let’s review
logarithms briefly. Recall that

log,x=a
means that
b =x.
Therefore, if we want to take the log base 2 of x
log,x=a=2"=ux,

we want to find the value of a. We can take the natural log (log base ¢) or log base 10 of
both sides (which do appear on your calculator). Then

In2) =Inx=ain2=Inx

and

Inx
a=-—
In2

Example 2.2.1:

Let H and T be the outcomes of flipping a coin. If the coin is fair, then

P(H) = P(T) = }
and
i(H)y=1i(T) =1 bit.

If the coin is not fair, then we would expect the information associated with each event to
be different. Suppose

PH) =i PD=1

Then
i(H) = 3 bits, i(T) =0.193 bits.

At least mathematically, the occurrence of a head conveys much more information than
the occurrence of a tail. As we shall see later, this has certain consequences for how the
information conveyed by these outcomes should be encoded. ¢

If we have a set of independent events A;, which are sets of outcomes of some experi-
ment 8, such that

UA =S

16 2 LOSSLESS COMPRESSION

where § is the sample space, then the average self-information associated with the random
experiment is given by

H =} P(A)i(A) =~} P(A)log, P(A,).

This quantity is called the entropy associated with the experiment. One of the many con-
tributions of Shannon was that he showed that if the experiment is a source that puts out
symbols A, from a set A, then the entropy is a measure of the average number of binary
symbols needed to code the output of the source. Shannon showed that the best that a lossless
compression scheme can do is to encode the output of a source with an average number of
bits equal to the entropy of the source.

The set of symbols A is often called the alphabet for the source, and the symbols are
referred to as letters. For a general source § with alphabet 4 ={1,2, ..., m} that generates
a sequence {X,.X,, ...}, the entropy is given by

1
H(S) = lim -G, (2.2)
n-2 pf
where
y=m iy=m iy=m
G,==Y Y Y PX =i, Xy=ir....,X,=i)logP(X, =i, ,=10,.... X, =1,)
h=1 ir=1 i,=1
and {X|, X,...., X, } is a sequence of length n from the source. We will talk more about the

reason for the limit in Equation (2.2) later in the chapter. If each element in the sequence is
independent and identically distributed (iid), then we can show that
G,=-nY PX,=i)logP(X, =i) (2.3)

=1
and the equation for the entropy becomes
H(S) = -3 P(X))log P(X,). (2.4)

For most sources Equations (2.2) and (2.4) are not identical. If we need to distinguish
between the two, we will call the quantity computed in (2.4) the first-order entropy of the
source, while the quantity in (2.2) will be referred to as the entropy of the source.

In general, it is not possible to know the entropy for a physical source, so we have to
estimate the entropy. The estimate of the entropy depends on our assumptions about the
structure of the source sequence.

Consider the following sequence:

12323454567898910

Assuming the frequency of occurrence of each number is reflected accurately in the number
of times it appears in the sequence, we can estimate the probability of occurrence of each
symbol as follows:

P(1) = P(6) = P(7) = P(10) = &
P(2) = P(3) = P(4) = P(5) = P(8) = P(9) =

16"

2.2 A Brief Introduction to Information Theory 17

Assuming the sequence is iid, the entropy for this sequence is the same as the first-order
entropy as defined in (2.4). The entropy can then be calculated as

10

H == P(i)log, P(i).

i=1

With our stated assumptions, the entropy for this source is 3.25 bits. This means that the
best scheme we could find for coding this sequence could only code it at 3.25 bits/sample.

However. if we assume that there was sample-to-sample correlation between the samples
and we remove the correlation by taking differences of neighboring sample values, we arrive
at the residual sequence

111-1111-1111¢11 =111

This sequence is constructed using only two values with probabilities P(1) = £ and

P(-1)= l—}) The entropy in this case is 0.70 bits per symbol. Of course, knowing onllﬁy this
sequence would not be enough for the receiver to reconstruct the original sequence. The
receiver must also know the process by which this sequence was generated from the original
sequence. The process depends on our assumptions about the structure of the sequence.
These assumptions are called the model for the sequence. In this case, the model for the

sequence is
ap =X, -+ r,

where x, is the nth element of the original sequence and r, is the nth element of the residual
sequence. This model is called a sratic model because its parameters do not change with n.
A model whose parameters change or adapt with n to the changing characteristics of the
data is called an adaptive model.

Basically. we see that knowing something about the structure of the data can help to
“reduce the entropy.” We have p'ut “reduce the entropy™ in quotes because the entropy of
the source is a measure of the amount of information generated by the source. As long
as the information generated by the source is preserved (in whatever representation), the
entropy remains the same. What we are reducing is our estimate of the entropy. The “actual”
structure of the data in practice is generally unknowable, but anything we can learn about
the data can help us to estimate the actual source entropy. Theoretically, as seen in Equation
(2.2), we accomplish this in our definition of the entropy by picking larger and larger blocks
of data to calculate the probability over, letting the size of the block go to infinity.

Consider the following contrived sequence:

12123333123333123312

Obviously, there is some structure to this data. However, if we look at it one symbol at a

time. the structure is difficult to extract. Consider the probabilities: P(1) = P(2) = % and

P(3) = L. The entropy is 1.5 bits/symbol. This particular sequence consists of 20 symbols;
24 p q

therefore, the total number of bits required to represent this sequence is 30. Now let’s take
the same sequence and look at it in blocks of two. Obviously, there are only two symbols,
12, and 3 3. The probabilities are P(1 2) =1, P(33) = % and the entropy is 1 bit'symbol.

2

18 2 LOSSLESS COMPRESSION

As there are 10 such symbols in the sequence, we need a total of 10 bits to represent the
entire sequence—a reduction of a factor of three. The theory says we can always extract the
structure of the data by taking larger and larger block sizes; in practice, there are limitations
to this approach. To avoid these limitations, we try to obtain an accurate model for the
data and code the source with respect to the model. In Section 2.3, we describe some of
the models commonly used in lossless compression algorithms. But before we do that, let’s
make a slight detour and see a more rigorous development of the expression for average
information. While the explanation is interesting, it is not really necessary for understanding
much of what we will study in this book and can be skipped.

2.2.1 Derivation of Average Information «x

We start with the properties we want in our measure of average information. We will then
show that requiring these properties in the information measure leads inexorably to the
particular definition of average information, or entropy, that we have provided earlier.

Given a set of independent events A, A,, A, with probability p, = P(A,), we desire
the following properties in the measure of average information H:

1. We want H to be a continuous function of the probabilities p;. That is, a small change
in p; should only cause a small change in the average information.

2. If all events are equally likely. that is. p, = 1/n for all i, then H should be a mono-
tonically increasing function of n. The more possible outcomes there are, the more
information should be contained in the occurrence of any particular outcome.

3. Suppose we divide the possible outcomes into a number of groups. We indicate the
occurrence of a particular event by first indicating the group it belongs to, then indi-
cating which particular member of the group it is. Thus, we get some information first
by knowing which group the event belongs to and then we get additional information
by learning which particular event (from the events in the group) has occurred. The
information associated with indicating the outcome in multiple stages should not be
any different than the information associated with indicating the outcome in a single
stage.

For example. suppose we have an experiment with three outcomes A,. A,, and A;,
with corresponding probabilities p,. p,. and p,. The average information associated
with this experiment is simply a function of the probabilities:

H =H(p. py. p3).
Let’s group the three outcomes into two groups
B ={A}. B,={A, A;}.
The probabilities of the events B, are given by

g, =P(B))=p,. ¢ =P(B,)=p,+ps.

2.2 A Brief Introduction to Information Theory 19

If we indicate the occurrence of an event A, by first declaring which group the event
belongs to and then declaring which event occurred, the total amount of average
information would be given by

D
=t vt () von (2.2).
1 > -

We require that the average information computed either way be the same.

In his classic paper. Shannon showed that the only way all these conditions could be
satisfied was if

H=-KY plogp,

where K is an arbitrary positive constant. Let’s review his proof as it appears in the appendix
of his paper [7].

Suppose we have an experiment with n = k" equally likely outcomes. The average
information H(%. % %) associated with this experiment is a function of n. In other
words,

We can indicate the occurrence of an event from A" events by a series of m choices from
k equally likely possibilities. For example, consider the case of k =2 and m = 3. There are
eight equally likely events; therefore, H(%. é %) = A(8).

We can indicate occurrence of any particular event as shown in Figure 2.1. In this
case, we have a sequence of three selections. Each selection is between two equally likely
possibilities. Therefore,

H(L L, D) = AQ8)
= HCE D+ HCE D+ HE D (2.5)
+1HC D)
FL[HG D + 1AL Y
+4HGL D)
= 3H(1. 1)
= 3A(2

In other words,

(The rather odd way of writing the left-hand side of Equation (2.5) is to show how the terms
correspond to the branches of the tree shown in Figure 2.1.) We can generalize this for the
case of n=k" as

A(n) = Ak™) = mA(k).

20 2 LOSSLESS COMPRESSION

Third selection

Second selection

Third selection

First selection

Third selection

Second selection

Third selection

FIGURE 2.1 A possible way of identifying the occurrence of an event.

Similarly, for j' choices,
A(J') = 1A())-
We can pick [arbitrarily large (mére on this later) and then choose m so that
k™ Sj’ < Lm+D)
Taking logarithms of all terms, we get
mlogk < llogj < (m+1)logk.

Now divide through by /logk to get

+

<lOg]<ﬁ
“logk T I

—
~ | —

Recall that we picked [arbitrarily large. If [is arbitrarily large, then % is arbitrarily small.
This means that the upper and lower bounds of l‘—ggf can be made arbitrarily close to 5 by

picking [arbitrarily large. Another way of saying this is

m _logj| _
[logk

2.2 A Brief Introduction to Information Theory 21

where € can be made arbitrarily small. We will use this fact to find an expression for A(n)
and hence for H(%, e ,1—1)
To do this we use our second requirement that H(%, ce %) be a monotonically increasing

function of n. As
1 1
H(—,...,—>=A(n),
n n

this means that A(n) is a monotonically increasing function of n. If
k™ SJ[Skm-+—]
then in order to satisfy our second requirement
A(K™) = A(J) = AK™Y)
or
mA(k) <IA(j) < (m+1)A(k).

Dividing through by [A(k), we get

m_AG _m L
I~ Ak) =1
Using the same arguments as before, we get
m A())
— - ——| <€
I A(k)
where € can be made arbitrarily small.
Now ::—é; is at most a distance of € away from 7, and ::ﬁ is at most a distance of €
away from 7. Therefore, /’3% is at most a distance of 2e away from IL;’E-{
Aj) logj
A(k) logk

We can pick € to be arbitrarily small, and j and k are arbitrary. The only way this inequality
can be satisfied for arbitrarily small € and arbitrary j and & is for A(j) = K log(}), where K
is an arbitrary constant. In other words,

H = Klog(n).

Up to this point we have only looked at equally likely events. We now make the transition
to the more general case of an experiment with outcomes that are not equally likely. We do
that by considering an experiment with 3" n; equally likely outcomes that are grouped in n
unequal groups of size n; with rational probabilities (if the probabilities are not rational, we
approximate them with rational probabilities and use the continuity requirement):

n.

i

pi - Z}r:] nj‘

22 2 LOSSLESS COMPRESSION

Given that we have Y_ n; equally likely events, from the development above we have
H=Klog () n;). (2.6)

If we indicate an outcome by first indicating which of the n groups it belongs to, and second
indicating which member of the group it is, then by our earlier development the average
information H is given by

1 l | 1
H=H(p,,pz,....p,,)+le(A,...,~)+-~-+/7”H(— —) (2.7)
nl ”] ’n nn
= H(Phl’z """ pn)+[)lK10g”]+p3K10gnE+”'+an10g”u (28)
= H(pi,pye -5 pa) +K Y pilogn,. (2.9)

i=1

Equating the expressions in Equations (2.6) and (2.9), we obtain

n

chg(znj):H(pl’pl’""pn)+KZprlognl

=1

or

H(py, py.---s Pw) KlOg(Z”])—KZpllogn,

i=1

= —K|> p,logn, log(Zn/)}
j=1

Li=1

Li=1 i=1

= —K|>_ plog n,»—log<Zn,> Zp,i| {2.10)
Jj=1

= —K|> plogn —> p, log(Zn]):'

Li=1 i=1 j=1

-KY p, [log n, - log(z nj>i|
=1 j=1

i

! i
—K> p;log —— (2.17)
g ZJ:I”]

= —KY p,logp, (2.12)

n
i

where, in Equation (2.10) we have used the fact that)
to be 1, and we have the formula

", p; = 1. By convention we pick K

H= ——Zp,-logp,..

Note that this formula is a natural outcome of the requirements we imposed in the
beginning. It was not artificially forced in any way. Therein lies the beauty of information
theory. Like the laws of physics, its laws are intrinsic in the nature of things. Mathematics
is simply a tool to express these relationships.

2.3 Models 23

2.3 Models

As we saw in Section 2.2, having a good model for the data can be useful in estimating the
entropy of the source. As we will see in later chapters, good models for sources lead to more
efficient compression algorithms. In general. in order to develop techniques that manipulate
data using mathematical operations, we necd to have a mathematical model for the data.
Obviously, the better the model (i.e., the closer the model matches the aspects of reality that
are of interest to us). the more likely it is that we will come up with a satisfactory technique.
There are several approaches to building mathematical models.

2.3.1 Physical Models

If we know something about the physics of the data generation process, we can use that
information to construct a model. For example. in speech-related applications, knowledge
about the physics of speech production can be used to construct a mathematical model for
the sampled speech process. Sampled speech can then be encoded using this model. We will
discuss speech production models in more detail in Chapter 8.

Models for certain telemetry data can also be obtained through knowledge of the under-
lying process. For example, if residential electrical meter readings at hourly intervals were
to be coded. knowledge about the living habits of the populace could be used to determine
when electricity usage would be high and when the usage would be low. Then instead of
the actual readings, the difference (residual) between the actual readings and those predicted
by the model could be coded.

In general. however. the physics of data generation is simply too complicated to under-
stand, let alone use to develop a model. Where the physics of the problem is too complicated,
we can obtain a model based on empirical observation of the statistics of the data.

2.3.2 Probability Models

The simplest statistical model for the source is to assume that each letter that is generated by
the source is independent of every other letter, and each occurs with the same probability.
We could call this the ignorance model. as it would generally be useful only when we know
nothing about the source. (Of course. that rea!/y might be true, in which case we have a rather
unfortunate name for the model!) The next step up in complexity is to keep the indepen-
dence assumption, but remove the equal probability assumption and assign a probability of
occurrence to each letter in the alphabet. For a source that generates letters from an alphabet
A={a,.a...... ay). we can have a probability model P = {P(a,). P(a,). P(ay)}.

Given a probability model (and the independence assumption). we can compute the
entropy of the source using Equation (2.4). As we will see in the following chapters using
the probability model. we can also construct some very efficient codes to represent the letters
in A. Of course, these codes are only efficient if our mathematical assumptions are in accord
with reality.

If the assumption of independence does not fit with our observation of the data, we can
generally find better compression schemes if we discard this assumption. When we discard

24 2 LOSSLESS COMPRESSION

the independence assumption, we have to come up with a way to describe the dependence
of elements of the data sequence on each other.

2.3.3 Markov Models

One of the most popular ways of representing dependence in the data is through the use of
Markov models, named after the Russian mathematician Andrei Andrevich Markov (1856-
1922). For models used in lossless compression, we use a specific type of Markov process
called a discrete time Markov chain. Let {x,} be a sequence of observations. This sequence
is said to follow a kth-order Markov model if

P(x,|x v,) =Pl lx,_,...... X g) (2.13)
In other words, knowledge of the past £ symbols is equivalent to the knowledge of the entire
past history of the process. The values taken on by the set {x,_,,...,x,_,} are called the
states of the process. If the size of the source alphabet is [, then the number of states is I*.
The most commonly used Markov model is the first-order Markov model, for which

P(xnlxn—]) = P(‘xnlxn—l’ Xp2s Xp3s v e) (2] 4)

Equations (2.13) and (2.14) indicate the existence of dependence between samples. However,

they do not describe the form of the dependence. We can develop different first-order Markov

models depending on our assumption about the form of the dependence between samples.
If we assumed that the dependence was introduced in a linear manner, we could view

the data sequence as the output of a linear filter driven by white noise. The output of such

a filter can be given by the difference equation

X, =px,_, +¢, (2.15)

n

where €, is a white noise process. This model is often used when developing coding
algorithms for speech and images.

The use of the Markov model does not require the assumption of linearity. For example,
consider a binary image. The image has only two types of pixels, white pixels and black
pixels. We know that the appearance of a white pixel as the next observation depends,
to some extent, on whether the current pixel is white or black. Therefore, we can model
the pixel process as a discrete time Markov chain. Define two states S,, and S, (S,, would
correspond to the case where the current pixel is a white pixel, and S, corresponds to the
case where the current pixel is a black pixel). We define the transition probabilities P(w/b)
and P(b/w), and the probability of being in each state P(S,.) and P(S,). The Markov model
can then be represented by the state diagram shown in Figure 2.2.

The entropy of a finite state process with states S, is simply the average value of the
entropy at each state:

H=Y P(S)H(S,). (2.16)

i=]

2.3 Models 25

P(blw)

P(wlw) P(blb)

P(wib)

FIGURE 2. 2 A two-state Markov model for binary images.

For our particular example of a binary image
H(S,) = —P(b/w)log P(b/w) — P(w/w)log P(w/w)

where P(w/w) = 1 — P(b/w). H(S,) can be calculated in a similar manner.

Example 2.3.1: Markov model

To see the effect of modeling on the estimate of entropy, let us calculate the entropy for a
binary image, first using a simple probability model and then using the finite state model
described above. Let us assume the following values for the various probabilities:

P(S,)=30/31 P(S,)=1/31
P(w|w) =0.99 P(blw)=0.01 P(b|b)=0.7 P(w|b)=0.3.
Then the entropy using a probability model and the iid assumption is
H = —O'.810g 0.8 —0.210g 0.2 = 0.206 bits.

Now using the Markov model

H(S,) = —0.310g0.3 - 0.710g 0.7 = 0.881 bits
and

H(S,) =—0.011og0.01 —0.9910g 0.99 = 0.081 bits

which, using Equation (2.16), results in an entropy for the Markov model of 0.107 bits,
about a half of the entropy obtained using the iid assumption. ¢

Markov Models in Text Compression

As expected, Markov models are particularly useful in text compression, where the prob-
ability of the next letter is heavily influenced by the preceding letters. In fact, the use
of Markov models for written English appears in the original work of Shannon [7]. In
current text compression literature, the kth-order Markov models are more widely known

26 2 LOSSLESS COMPRESSION

as finite context models, with the word context being used for what we have earlier defined
as state.

Consider the word preceding. Suppose we have already processed precedin and are going
to encode the next letter. If we take no account of the context and treat each letter as a
surprise, the probability of the letter g occurring is relatively low. If we use a first-order
Markov model or single-letter context (that is, we look at the probability model given n),
we can see that the probability of g would increase substantially. As we increase the context
size (go from n to in to din and so on), the probability of the alphabet becomes more and
more skewed, which results in lower entropy.

Shannon used a second-order model for English text consisting of the 26 letters and one
space to obtain an entropy of 3.1 bits/letter [8]. Using a model where the output symbols
were words rather than letters brought down the entropy to 2.4 bits/letter. Shannon then used
predictions generated by people (rather than statistical models) to estimate the upper and
lower bounds on the entropy of the second order model. For the case where the subjects knew
the 100 previous letters. he estimated these bounds to be 1.3 and 0.6 bits/letter, respectively.

The longer the context, the better its predictive value. However, if we were to store the
probability model with respect to all contexts of a given length, the number of contexts
would grow exponentially with the length of context. Furthermore, given that the source
imposes some structure on its output, many of these contexts may correspond to strings
that would never occur in practice. Consider a context model of order four (the context is
determined by the last four symbols). If we take an alphabet size of 95, the possible number
of contexts is 95*—more than 81 million!

This problem is further exacerbated by the fact that different realizations of the source
output may vary considerably in terms of repeating patterns. Therefore, context modeling
in text compression schemes tends to be an adaptive strategy in which the probabilities for
different symbols in the different contexts are updated as they are encountered. However,
this means that we will often encounter symbols that have not been encountered before for
any of the given contexts (this is known as the zero frequency problem). The larger the
context, the more often this will happen. This problem could be resolved by sending a code
to indicate that the following symbol was being encountered for the first time, followed by
a prearranged code for that symbol. This would significantly increase the length of the code
for the symbol on its first occurrence (in the given context). However, if this situation did not
occur too often. the overhead associated with such occurrences would be small compared to
the total number of bits used to encode the output of the source. Unfortunately. in context-
based encoding, the zero frequency problem is encountered often enough for overhead to be
a problem, especially for longer contexts. Solutions to this problem are presented by the ppm
(prediction with partial match) algorithm and its variants (described in detail in Chapter 6).

Briefly, the ppm algorithms first attempt to find if the symbol to be encoded has a
nonzero probability with respect to the maximum context length. If this is so, the symbol is
encoded and transmitted. If not, an escape symbol is transmitted, the context size is reduced
by one, and the process is repeated. This procedure is repeated until a context is found
with respect to which the symbol has a nonzero probability. To guarantee that this process
converges, a null context is always included with respect to which all symbols have equal
probability. Initially, only the shorter contexts are likely to be used. However, as more and
more of the source output is processed, the longer contexts, which offer better prediction,

2.4 Coding 27

Source | ——-.

Switch
Source 2 —

| Sourcen ——

[

FIGURE 2.3 A composite source.

will be used more often. The probability of the escape symbol can be computed in a number
of different ways leading to different implementations [1}.

The use of Markov models in text compression is a rich and active area of research. We
describe some of these approaches in Chapter 6 (for more details, see [1]).

2.3.4 Composite Source Model

In many applications, it is not easy to use a single model to describe the source. In such cases,
we can define a composite source, which can be viewed as a combination or composition of
several sources, with only one source being active at any given time. A composite source
can be represented as a number of individual sources 8,, each with its own model M. and
a switch that selects a source 8, with probability P, (as shown in Figure 2.3). This is an
exceptionally rich model and can be used to describe some very complicated processes. We
will describe this model in more detail when we need it.

2.4 Coding

When we talk about coding in this chapter (and through most of this book). we mean the
assignment of binary sequences to elements of an alphabet. The set of binary sequences is
called a code, and the individual meimbers of the set are called codewords. An alphabet is a
collection of symbols called letters. For example. the alphabet used in writing most books
consists of the 26 lowercase letters. 26 uppercase letters, and a variety of punctuation marks.
In the terminology used in this book, a comma is a letter. The ASCII code for the letter a
is 1000011, the letter A is coded as 1000001, and the letter =" is coded as 0011010. Notice
that the ASCII code uses the same number of bits to represent each symbol. Such a code
is called a fixed-length code. If we want to reduce the number of bits required to represent
different messages. we need to use a different number of bits to represent different symbols.
If we use fewer bits to represent symbols that occur more often, on the average we would
use fewer bits per symbol. The average number of bits per symbol is often called the rare
of the code. The idea of using fewer bits to represent symbols that occur more often is the

28 2 LOSSLESS COMPRESSION

same idea that is used in Morse code: the codewords for letters that occur more frequently
are shorter than for letters that occur less frequently. For example. the codeword for E is -,
while the codeword for Z is — — .. [9].

2.4.1 Uniquely Decodable Codes

The average length of the code is not the only important point in designing a *“good”
code. Consider the following example adapted from [10]. Suppose our source alphabet
consists of four letters ay, a,, ay, and a,, with probabilities P(a,) = 1 3+ Play) = 3, and
P(ay) = P(a,) = 3. The entropy for this source is 1.75 bits/symbol. Consider the Codes for
this source in Tdb]e 2.1
The average length / for for each code is given by

4
= ZP(a,)n(a)

i=1
where n(a;) is the number of bits in the codeword for letter a, and the average length is given
in bits/symbol. Based on the average length, Code 1 appears to be the best code. However,
to be useful, a code should have the ability to transfer information in an unambiguous
manner. This is obviously not the case with Code 1. Both @, and a, have been assigned the
codeword 0. When a 0 is received, there is no way to know whether an a, was transmitted
or an a,. We would like each symbol to be assigned a unigue codeword.

At first glance Code 2 does not seem to have the problem of ambiguity; each symbol is
assigned a distinct codeword. However, suppose we want to encode the sequence a, a, a,.
Using Code 2. we would encode this with the binary string 100. However, when the string
100 is received at the decoder, there are several ways in which the decoder can decode this
string. The string 100 can be decoded as a, a, a,, or as a, a,. This means that once a
sequence is encoded with Code 2. the original sequence cannot be recovered with certainty.
In general, this is not a desirable property for a code. We would like unigue decodability from
the code; that is, any given sequence of codewords can be decoded in one, and only one, way.

We have already seen that Code 1 and Code 2 are not uniquely decodable. How about
Code 3? Notice that the first three codewords all end in a 0. In fact, a 0 always denotes the
termination of a codeword. The final codeword contains no Os and is 3 bits long. Because
all other codewords have fewer than three Is and terminate in a 0, the only way we can get
three s in a row is as a code for a,. The decoding rule is simple. Accumulate bits until you
get a 0 or until you have three Is. There is no ambiguity in this rule, and it is reasonably

TABLE 2.1 Four different codes for a four-letter alphabet.

Letters Probability Code | Code 2 Code 3 Code 4
a, 0.5 0 0 0 0
as 0.25 0 1 10 01
a 0.125 1 00 110 011
ay 0.125 10 11 111 o111

Average length 1.125 1.25 1.75 1.875

2.4 Coding 29

easy to see that this code is uniquely decodable. With Code 4 we have an even simpler
condition. Each codeword starts with a 0. and the only time we see a O is in the beginning
of a codeword. Therefore. the decoding rule is accumulate bits until you see a 0. The bit
before the 0 is the last bit of the previous codeword.

There is a slight difference between Code 3 and Code 4. In the case of Code 3. the
decoder knows the moment a code is complete. In Code 4, we have to wait till the beginning
of the next codeword before we know that the current codeword is complete. Because of this
property, Code 3 is called an instantaneous code. Although Code 4 is not an instantaneous
code, it is almost that.

While this property of instantaneous or near-instantaneous decoding is a nice property to
have, it is not a requirement for unique decodability. Consider the code shown in Table 2.2.
Let’s decode the string OIT111111111111111. In this string. the first codeword is either O
corresponding to @, or Ol corresponding to a,. We cannot tell which one until we have
decoded the whole string. Starting with the assumption that the first codeword corresponds
to a,, the next eight pairs of bits are decoded as «;. However, after decoding eight a;s, we
are left with a single (dangling) 1 that does not correspond to any codeword. On the other
hand, if we assume the first codeword corresponds to «,, we can decode the next 16 bits as
a sequence of eight a;s, and we do not have any bits left over. The string can be uniquely
decoded. In fact, Code 5, while it is certainly not instantaneous, is uniquely decodable.

We have been looking at small codes with four letters or less. Even with these, it is not
immediately evident whether the code is uniquely decodable or not. In deciding whether
larger codes are uniquely decodable, a systematic procedure would be useful. Actually. we
should include a caveat with that last statement. Later in this chapter we will include a class
of variable-length codes that are always uniquely decodable. so a test for unique decodability
may not be that necessary. You might wish to skip the following discussion for now. and
come back to it when you find it necessary.

Before we describe the procedure for deciding whether a code is uniquely decodable. let’s
take another look at our last example. We found that we had an incorrect decoding because
we were left with a binary string (1) that was not a codeword. If this had not happened. we
would have had two valid decodings. For example, consider the code shown in Table 2.3. Let’s

TABLE 2.2 Code 5.

Letter Codeword

a, 0
- 01
s 11

TABLE 2.3 Code 6.

Letter Codeword

a, 0
a5 01
N 10

30 2 LOSSLESS COMPRESSION

encode the sequence a, followed by eight a;s using this code. The coded sequence is
01010101010101010. The first bit is the codeword for a,. However, we can also decode it
as the first bit of the codeword for a,. If we use this (incorrect) decoding, we decode the
next seven pairs of bits as the codewords for a,. After decoding seven a,s, we are left with
a single O that we decode as a,. Thus, the incorrect decoding is also a valid decoding, and
this code is not uniquely decodable.

A Test for Unique Decodability x

In the previous examples, in the case of the uniquely decodable code, the binary string left
over after we had gone through an incorrect decoding was not a codeword. In the case of the
code that was not uniquely decodable, in the incorrect decoding what was left was a valid
codeword. Based on whether the dangling suffix is a codeword or not, we get the following
test [11, 12].

We start with some definitions. Suppose we have two binary codewords a and b, where
a is k bits long, b is n bits long, and k < n. If the first & bits of b are identical to a, then « is
called a prefix of b. The last n — k bits of b are called the dangling suffix [11]. For example,
if a =010 and 5 =01011, then « is a prefix of b and the dangling suffix is 11.

Construct a list of all the codewords. Examine all pairs of codewords to see if any
codeword is a prefix of another codeword. Whenever you find such a pair, add the dangling
suffix to the list unless you have added the same dangling suffix to the list in a previous
iteration. Now repeat the procedure using this larger list. Continue in this fashion until one
of the following two things happens:

1. You get a dangling suffix that 1s a codeword.
2. There are no more unique dangling suffixes.

If you get the first outcome. the code is not uniquely decodable. However, if you get the
second outcome, the code is uniquely decodable.
Let’s see how this procedure works with a couple of examples.

Example 2.4.1:

Consider Code 5. First list the codewords
{0.01.11}

The codeword 0 is a prefix for the codeword O1. The dangling sutfix is 1. There are no
other pairs for which one element of the pair is the prefix of the other. Let us augment the
codeword list with the dangling suftix.

{0.01. 11,1}

Comparing the elements of this list. we find O is a prefix of Ol with a dangling suffix of 1. But
we have already included 1 in our list. Also. I 1s a prefix of 11. This gives us a dangling suffix
of 1, which is already in the list. There are no other pairs that would generate a dangling suftix,
so we cannot augment the list any further. Therefore, Code 5 is uniquely decodable. ¢

2.4 Coding 31

Example 2.4.2:

Consider Code 6. First list the codewords
{0.01, 10}

The codeword 0 is a prefix for the codeword 01. The dangling suffix is 1. There are no other
pairs for which one element of the pair is the prefix of the other. Augmenting the codeword
list with 1, we obtain the list

{0.01.10. 1}

In this list, 1 is a prefix for 10. The dangling suffix for this pair is O, which is the codeword
for a,. Therefore, Code 6 is not uniquely decodable. ¢

2.4.2 Prefix Codes

The test for unique decodability requires examining the dangling suffixes initially generated
by codeword pairs in which one codeword is the prefix of the other. If the dangling suffix
is itself a codeword, then the code is not uniquely decodable. One type of code in which we
will never face the possibility of a dangling suffix being a codeword is a code in which no
codeword is a prefix of the other. In this case, the set of dangling suffixes is the null set, and
we do not have to worry about finding a dangling suffix that is identical to a codeword. A
code in which no codeword is a prefix to another codeword is called a prefiv code. A simple
way to check if a code is a prefix code is to draw the rooted binary tree corresponding to
the code. Draw a tree that starts from a single node (the roor node) and has a maximum of
two possible branches at each node. One of these branches corresponds to a | and the other
branch corresponds to a 0. In this book. we will adopt the convention that when we draw
a tree with the root node at the top, the left branch corresponds to a 0 and the right branch
corresponds to a 1. Using this convention. we can draw the binary tree for Code 2, Code 3,
and Code 4 as shown in Figure 2.4.

Note that apart from the root node, the trees have two kinds of nodes—nodes that give
rise to other nodes and nodes that do not. The first kind of nodes are called internal nodes,
and the second kind are called external nodes or leaves. In a pretix code, the codewords are
only associated with the external nodes. A code that is not a prefix code, such as Code 4, will
have codewords associated with internal nodes. The code for any symbol can be obtained

a, a, a- as

ay ay

Code 2 Code 3 Code 4

FIGURE 2. 4 Binary trees for three different codes.

32 2 LOSSLESS COMPRESSION

by traversing the tree from the root to the external node corresponding to that symbol. Each
branch on the way contributes a bit to the codeword: a 0 for each left branch and a 1 for
each right branch.

It is nice to have a class of codes. whose members are so clearly uniquely decodable.
However. are we losing something if we restrict ourselves to prefix codes? Could it be that
if we do not restrict ourselves to prefix codes, we can find shorter codes? Fortunately for us
the answer is no. For any nonprefix uniquely decodable code, we can always find a prefix
code with the same codeword lengths. We prove this in the next section.

2.4.3 The Kraft-McMillan Inequality x

The particular result we look at in this section consists of two parts. The first part provides
a necessary condition on the codeword lengths of uniquely decodable codes. The second
part shows that we can always find a prefix code that satisfies this necessary condition.
Therefore. if we have a uniquely decodable code that is not a prefix code, we can always
find a prefix code with the same codeword lengths.

Theorem [t C beacode with N codewords with lengths I, L, ..., 1. If C is uniquely
decodable, then

N
Ke)y=>2""<1.
=1

This inequality is known as the Kraft-McMillan inequality.

Proof The proof works by looking at the nth power of K(€). If K(€) is greater than
one, then K(C)" should grow exponentially with n. If it does not grow exponentially with
n, then this is proof that YV 27/ < 1.

Let n be an arbitrary integer. Then

B () e

N N N
— Z Z . Z 2»(1,i +l,z+~»‘1,”1. (2 1 8]

The exponent /; + 1, +---+/; 1s simply the length of n codewords from the code €. The
smallest value that this exponent can take is greater than or equal to n, which would be the
case if all codewords were 1 bit long. If

[=max{/,.LL..... Iy}

then the largest value that the exponent can take is less than or equal to nl. Therefore, we
can write this summation as
nl
K@y =3y A2

k=n

2.4 Coding 33

where A, is the number of combinations of n codewords that have a combined length of
k. Let’s take a look at the size of this coefficient. The number of possible distinct binary
sequences of length k is 2*. If this code is uniquely decodable, then each sequence can
represent one and only one sequence of codewords. Therefore, the number of possible
combinations of codewords whose combined length is k cannot be greater than 2*. In other
words,

A, <28,
This means that
nil nl
K@)'=3 A2"* <y 22 % =nl—n+1. (2.19)
k=n k=n

But if K(C) is greater than one, it will grow exponentially with n, while n(/— 1)+ can
only grow linearly. So if K(C) is greater than one, we can always find an n large enough
that the inequality (2.19) is violated. Therefore, for a uniquely decodable code C, K(@) is
less than or equal to one. O

This part of the Kraft-McMillan inequality provides a necessary condition for uniquely
decodable codes. That is, if a code is uniquely decodable, the codeword lengths have to
satisfy the inequality. The second part of this result is that if we have a set of codeword
lengths that satisfy the inequality, we can always find a prefix code with those codeword
lengths. The proof of this assertion presented here is adapted from [6].

Theorem Given a set of integers |, 1,, ..., ly that satisfy the inequality

N

S 2h<i

=1

we can always find a prefix code with codeword lengths 1. 1,, ..., Iy

Proof We will prove this assertion by developing a procedure for constructing a prefix
code with codeword lengths /,, [,, ..., 1 that satisfy the given inequality.
Without loss of generality, we can assume that

<< <y,

Define a sequence of numbers w,, w,, ..., w, as follows:

w, =0

34 2 LOSSLESS COMPRESSION

The binary representation of w, for j > 1 would take up [log,(w; + 1)7 bits. We will use
this binary representation to construct a prefix code. We first note that the number of bits
in the binary representation of w; is less than or equal to /. This is obviously true for w,.
For j > 1.

-1
logz(wj+ 1) = 10g{2 2l 4]:|
=1

il
= log, |:2" Z 270 2“[']
i=1

I

j
/,+lug:|:22 "}

=1
<
[].

The last inequality results from the hypothesis of the theorem that >y 27" < 1, which

_ i=
implies that 3/ 27" < 1. As the logarithm of a number less than one is negative, [, +
log, | S0, 27| has to be less than /.

Using the binary representation of w;. we can devise a binary code in the following manner:
If [log,(w; 4 1)] = I, then the jth codeword c; is the binary representation of w ;. If [log, (w; +
1)] < 1,. then ¢, is the binary representation of w;, with /; — [log,(w; + 1)] zeros appended
to the right. This is certainly a code, but is it a prefix code? If we can show that the code € =
{¢), Cay .-, ey} is a prefix code, then we will have proved the theorem by construction.

Suppose that our claim is not true. Then for some j < k, ¢; is a prefix of ¢,. This means
that the /, most significant bits of w; form the binary representation of w,. Therefore if
we right-shift the binary representation of wy by [, —[; bits, we should get the binary
representation for w,. We can write this as

Wy
Wi= 150, |-

However,

k-1
Pp— Ilﬂlc
W, —ZZ .
i=1

Therefore,

Il
g
]
-
M7
t\L
|

vV
+

(2.20)

2.5 Algorithmic Information Theory 35

That is, the smallest value for ="+ is w; + 1. This contradicts the requirement for ¢; being the

prefix of ¢;. Therefore. ¢; cannot be the prefix for ¢,. As j and k were arbitrary, this means
that no codeword is a prefix of another codeword. and the code € is a prefix code. a

Therefore, if we have a uniquely decodable code. the codeword lengths have to satisfy
the Kraft-McMillan inequality. And, given codeword lengths that satisty the Kraft-McMillan
inequality. we can always find a prefix code with those codeword lengths. Thus, by restricting
ourselves to prefix codes, we are not in danger of overlooking nonprefix uniquely decodable
codes that have a shorter average length.

2.5 Algorithmic Information Theory

The theory of information described in the previous sections is intuitively satisfying and
has useful applications. However, when dealing with real world data. it does have some
theoretical difficulties. Suppose you were given the task of developing a compression scheme
for use with a specific set of documentations. We can view the entire set as a single long
string. You could develop models for the data. Based on these models you could calculate
probabilities using the relative frequency approach. These probabilities could then be used
to obtain an estimate of the entropy and thus an estimate of the amount of compression
available. All is well except for a tly in the “ointment.” The string you have been given is
tixed. There is nothing probabilistic about it. There is no abstract source that will generate
different sets of documentation at different times. So how can we talk about the entropies
without pretending that reality is somehow different from what it actually is? Unfortunately.
it is not clear that we can. Our definition of entropy requires the existence of an abstract
source. Our estimate of the entropy is still useful. It will give us a very good idea of how
much compression we can get. So. practically speaking, information theory comes through.
However, theoretically it seems there is some pretending involved. Algorithmic information
theory is a different way of looking at information that has not been as useful in practice
(and therefore we will not be looking at it a whole lot) but it gets around this theoretical
problem. At the heart of algorithmic information theory is a measure called Kolmogorov
complexiry. This measure, while it bears the name of one person, was actually discovered
independently by three people: R. Solomonoff, who was exploring machine learning; the
Russian mathematician A.N. Kolmogorov: and G. Chaitin. who was in high school when he
came up with this idea.

The Kolmogorov complexity K(x) of a sequence x is the size of the program needed
to generate x. In this size we include all inputs that might be needed by the program.
We do not specify the programming language because it is always possible to translate
a program in one language to a program in another language at fixed cost. If x was a
sequence of all ones, a highly compressible sequence. the program would simply be a print
statement in a loop. On the other extreme. if x were a random sequence with no structure
then the only program that could generate it would contain the sequence itself. The size
of the program, would be slightly larger than the sequence itself. Thus. there is a clear
correspondence between the size of the smallest program that can generate a sequence and
the amount of compression that can be obtained. Kolmogorov complexity seems to be the

36 2 LOSSLESS COMPRESSION

ideal measure to use in data compression. The problem is we do not know of any systematic
way of computing or closely approximating Kolmogorov complexity. Clearly, any program
that can generate a particular sequence is an upper bound for the Kolmogorov complexity
of the sequence. However, we have no way of determining a lower bound. Thus. while
the notion of Kolmogorov complexity is more satisfying theoretically than the notion of
entropy when compressing sequences, in practice it is not yet as helpful. However, given
the active interest in these ideas it is quite possible that they will result in more practical
applications.

2.6 Minimum Description Length Principle

One of the more practical offshoots of Kolmogorov complexity is the minimum description
length (MDL) principle. The first discoverer of Kolmogorov complexity. Ray Solomonoff.
viewed the concept of a program that would generate a sequence as a way of modeling the
data. Independent from Solomonoff but inspired nonetheless by the ideas of Kolmogorov
complexity, Jorma Risannen in 1978 [13] developed the modeling approach commonly
known as MDL.

="

X

FIGURE 2. 5 An example to illustrate the MDL principle.

2.7 Summary 37

Let M, be a model from a set of models M that attempt to characterize the structure in a
sequence x. Let Dy, be the number of bits required to describe the model M;. For example,
if the set of models M can be represented by a (possibly variable) number of coefficients,
then the description of M; would include the number of coefficients and the value of each
coefficient. Let Ry, (x) be the number of bits required to represent x with respect to the
model M;. The minimum description length would be given by

min(Dy, + Ry (x))
J 1 J

Consider the example shown as Figure 2. 5, where the X's represent data values. Suppose
the set of models M is the set of k™ order polynomials. We have also sketched two
polynomials that could be used to model the data. Clearly, the higher-order polynomial does
a much “better” job of modeling the data in the sense that the model exactly describes
the data. To describe the higher order polynomial. we need to specify the value of each
coefficient. The coefficients have to be exact if the polynomial is to exactly model the data
requiring a large number of bits. The quadratic model, on the other hand, does not fit any
of the data values. However. its description is very simple and the data values are either
+1 or ~1 away from the quadratic. So we could exactly represent the data by sending the
coefficients of the quadratic (1, 0) and 1 bit per data value to indicate whether each data
value is +1 or —1 away from the quadratic. In this case, from a compression point of view,
using the worse model actually gives better compression.

2.7 Summary

In this chapter we learned some of the basic definitions of information theory. This was
a rather brief visit, and we will revisit the subject in Chapter 8. However, the coverage
in this chapter will be sufficient to take us through the next four chapters. The concepts
introduced in this chapter allow us to estimate the number of bits we need to represent the
output of a source given the probability model for the source. The process of assigning a
binary representation to the output of a source is called coding. We have introduced the
concepts of unique decodability and prefix codes, which we will use in the next two chapters
when we describe various coding algorithms. We also looked, rather briefly, at different
approaches to modeling. If we need to understand a model in more depth later in the book,
we will devote more attention to it at that time. However, for the most part, the coverage of
.. odeling in this chapter will be sufficient to understand methods described in the next four
chapters.

Further Reading

1. A very readable book on information theory and its applications in a number of
fields is Svmbols, Signals, and Noise—The Nature and Process of Communications,
by J.R. Pierce [14].

2. Another good introductory source for the material in this chapter is Chapter 6 of
Coding and Information Theory, by R.-W. Hamming [9].

38

2 LOSSLESS COMPRESSION

Various models for text compression are described very nicely and in more detail in
Text Compression, by T.C. Bell, J.G. Cleary, and LH. Witten [1].

For a more thorough and detailed account of information theory, the following books
are especially recommended (the first two are my personal favorites): Information The-
ory, by R.B. Ash [15]; Transmission of Information, by R.M. Fano [16]; Information
Theory and Reliable Communication, by R.G. Gallagher [11]; Entropy and Informa-
tion Theory, by RM. Gray [17]; Elements of Information Theory, by T.M. Cover and
J.A. Thomas [3]; and The Theory of Information and Coding, by R.J. McEliece [6].

Kolmogorov complexity is addressed in detail in An Introduction to Kolmogorov
Complexity and Its Applications, by M. Li and P. Vitanyi [18].

A very readable overview of Kolmogorov complexity in the context of lossless
compression can be found in the chapter Complexity Measures, by S.R. Tate [19].

Various aspects of the minimum description length principle are discussed in
Advances in Minimum Description Length edited by P. Grunwald, 1.J. Myung, and
M.A. Pitt [20]. Included in this book is a very nice introduction to the minimum
description length principle by Peter Grunwald [21].

2.8 Projects and Problems

2.

Suppose X is a random variable that takes on values from an M-letter alphabet. Show
that 0 < H(X) <log, M.

Show that for the case where the elements of an observed sequence are iid, the entropy
is equal to the first-order entropy.

Given an alphabet A = {a,, 4, a5, a,}, tind the first-order entropy in the following
cases:

ta) P(a) = P(a,) = P(a;) = P(‘h) = %-
(b) P(a)) =1, Pla)) =}, Pla;) = Pla,) = .
(e) P(a,)=0.505, P(a,) =}, P(a;) = 3, and P(a,) =0.12.

Suppose we have a source with a probability model P = {p,, p,, ..., p,,} and entropy
H,. Suppose we have another source with probability model Q = {¢,. 4,.....g,,} and
entropy H,,, where

and

How is H,, related to H, (greater, equal, or less)? Prove your answer.

2.8 Projects and Problems 39

5. There are several image and speech files among the accompanying data sets.

{a)

(b)

D)

Write a program to compute the first-order entropy of some of the image and
speech files.

Pick one of the image files and compute its second-order entropy. Comment on
the difference between the first- and second-order entropies.

Compute the entropy of the differences between neighboring pixels for the image
you used in part (b). Comment on what you discover.

Conduct an experiment to see how well a model can describe a source.

{a)

(b)

{c)
(d)

Write a program that randomly selects letters from the 26-letter alphabet
{a.b,....z} and forms four-letter words. Form 100 such words and see how
many of these words make sense.

Among the accompanying data sets is a file called 4letter.words, which
contains a list of four-letter words. Using this file, obtain a probability model
for the alphabet. Now repeat part (a) generating the words using the probability
model. To pick letters according to a probability model, construct the cumulative
density function (cdf) Fy(x) (see Appendix A for the definition of cdf). Using a
uniform pseudorandom number generator to generate a value r, where 0 < r < I,
pick the letter x, if Fy(x, —1) <r < Fy(x,). Compare your results with those of
part (a).

Repeat (b) using a single-letter context.

Repeat (b) using a two-letter context.

Determine whether the following codes are uniquely decodable:

(a)
(b)
(c)
(d)

{0.01. 11, 111}
{0,01,110, 111}
{0.10.110. 111}
{1,10.110, 111}

Using a text file compute the probabilities of each letter p,.

(b)

Assume that we need a codeword of length [log, Fi] to encode the letter i. Determine
the number of bits needed to encode the file.

Compute the conditional probabilities P(i/j) of a letter i given that the previous
letter is j. Assume that we need ﬂogzﬁm] to represent a letter i that follows a
letter j. Determine the number of bits needed to encode the file.

Huffman Coding

3.1 Overview

n this chapter we describe a very popular coding algorithm called the Huffman
coding algorithm. We first present a procedure for building Huffman codes
when the probability model for the source is known, then a procedure for
building codes when the source statistics are unknown. We also describe a
few techniques for code design that are in some sense similar to the Huffman
LOdm" approach. Finally, we give some examples of using the Huffman code for image
compression, audio compression, and text compression.

3.2 The Huffman Coding Algorithm

This technique was developed by David Huffman as part of a class assignment; the class was
the first ever in the area of information theory and was taught by Robert Fano at MIT [22].
The codes generated using this technique or procedure are called Huffinan codes. These
codes are prefix codes and are optimum for a given model (set of probabilities).

The Huffman procedure is based on two observations regarding optimum prefix codes.

1. In an optimum code, symbols that occur more frequently (have a higher probability
of occurrence) will have shorter codewords than symbols that occur less frequently.

2. Inanoptimum code, the two symbols that occur least frequently will have the same length.

It is casy to see that the first observation is correct. If symbols that occur more often had
codewords that were longer than the codewords for symbols that occurred less often, the
average number of bits per symbol would be larger than if the conditions were reversed.
Therefore, a code that assigns longer codewords to symbols that occur more frequently
cannot be optimum.

42 3 HUFFMAN CODING

To see why the second observation holds true, consider the following situation. Suppose
an optimum code € exists in which the two codewords corresponding to the two least
probable symbols do not have the same length. Suppose the longer codeword is bits longer
than the shorter codeword. Because this is a prefix code. the shorter codeword cannot be
a prefix of the longer codeword. This means that even if we drop the last k bits of the
longer codeword, the two codewords would still be distinct. As these codewords correspond.
to the least probable symbols in the alphabet. no other codeword can be longer than these
codewords; therefore. there is no danger that the shortened codeword would become the
prefix of some other codeword. Furthermore, by dropping these & bits we obtain a new code
that has a shorter average length than C. But this violates our initial contention that € is an
optimal code. Therefore, for an optimal code the second observation also holds true.

The Huffman procedure is obtained by adding a simple requirement to these two obser-
vations. This requirement is that the codewords corresponding to the two lowest probability
symbols differ only in the last bit. That is. if -y and 8 are the two least probable symbols in
an alphabet, if the codeword for y was m 0. the codeword for & would be mx 1. Here m
is a string of s and Os, and x denotes concatenation.

This requirement does not violate our two observations and leads to a very simple
encoding procedure. We describe this procedure with the help of the following example.

Example 3.2.1: Design of a Huffman code

Let us design a Huffman code for a source that puts out letters from an alphabet A =
{a,.a,, as, ay. as} with P(a,) = P(a;) = 0.2. P(ay) = 0.4, and P(q,) = P(as) = 0.1. The
entropy for this source is 2.122 bits/symbol. To design the Huffman code, we first sort
the letters in a descending probability order as shown in Table 3.1. Here ¢(«;) denotes the
codeword for u;.

TABLE 3.1 The initial five-letter alphabet.

Letter Probability Codeword
, 0.4 clus)
a, 0.2 clay)
dy 0.2 clay)
a, C.1 clay)
as 0.1 clag)

The two symbols with the lowest probability are ¢y and as. Therefore. we can assign
their codewords as

clay) = o %0

clag) = o, x1

where «, is a binary string. and * denotes concatenation.

3.2 The Huffman Coding Algorithm 43

We now define a new alphabet A’ with a four-letter alphabet «,. a,. a;. a,. where a;
is composed of a, and a5 and has a probability P(a}) = P(a,) + P(as) = 0.2. We sort this
new alphabet in descending order to obtain Table 3.2.

TABLE 3.2 The reduced four-letter alphabet.

Letter Probability Codeword
a, 0.4 c(asy)
a, 0.2 clay)
a, 0.2 clay)
a, 0.2 Q,

In this alphabet, a; and a are the two letters at the bottom of the sorted list. We assign
their codewords as

c(ay) = a, %0
c(a)) = a, %1
but ¢(a}) = a,. Therefore,
o) =0, x]
which means that
clay) = a,x 10

clas) = orx 11,

At this stage. we again define a new alphabet A" that consists of three letters a,. «,. .
where a is composed of a; and @ and has a probability P(a}) = P(a;) + P(a}) =0.4. We
sort this new alphabet in descending order to obtain Table 3.3.

TABLE 3.3 The reduced three-letter alphabet.

Letter Probability Codeword
a, 0.4 clas)
dy 0.4 o
a, 0.2 c(ay)

In this case, the two least probable symbols are «, and «. Therefore.

c(ay) = ay*0

cla)) = az*1.

44 3 HUFFMAN CODINGG

But ¢(a}) = «,. Therefore,
o, = ;0
which means that
c(ay) = a; %00
c(ay) = ;%010
c(as) = ayx011.

Again we define a new alphabet, this time with only two letters ay. a,. Here ay is
composed of the letters a} and «, and has probability P(a}) = P(ay)+ P(a,) =0.6. We now
have Table 3.4.

TABLE 3.4 The reduced two-letter alphabet.

Letter Probability Codeword
ay 0.6 o5
a, 0.4 c(ay)

As we have only two letters. the codeword assignment is straightforward:
clay) =0
cla,) =1
which means that «; = 0, which in turn means that
c(u,) = 01
c(ay) = 000
c(ay) = 0010
c(as) = 0011

TABLE 3.5 Huffman code for the original

five-letter alphabet.
Letter Probability Codeword
a, 04 1
a 0.2 01
a; 0.2 000
ay 0.1 0010

as 0.1 0011

3.2 The Huffman Coding Algorithm a5

a-(0.4) a>(0.4) ax(0.4) a3 (0.6)
a,(0.2) a,(0.2) a3j(0.4)70 a,(0.4)
a;(()?_i a;(02) }0 [11(02) I

(14(0.]) }(U——V aj(O?_) 1

as(0.1y-1

FIGURE 3.1 The Huffman encoding procedure. The symbol probabilities are listed
in parentheses.

and the Huffman code is given by Table 3.5. The procedure can be summarized as shown
in Figure 3.1. ¢

The average length for this code is
I=4x14+2x2+.2x34+.1x4+.1x4=2.2 bits/symbol.

A measure of the efficiency of this code is its redundancy—the difference between the
entropy and the average length. In this case, the redundancy is 0.078 bits/symbol. The
redundancy is zero when the probabilities are negative powers of two.

An alternative way of building a Huffman code is to use the fact that the Huffman
code. by virtue of being a prefix code. can be represented as a binary tree in which the
external nodes or leaves correspond to the symbols. The Huffman code for any symbol can
be obtained by traversing the tree from the root node to the leaf corresponding to the symbol.
adding a 0 to the codeword every time the traversal takes us over an upper branch and a
I every time the traversal takes us over a lower branch.

We build the binary tree starting at the leaf nodes. We know that the codewords for the
two symbols with smallest probabilities are identical except for the last bit. This means that
the traversal from the root to the leaves corresponding to these two symbols must be the same
except for the last step. This in turn means that the leaves corresponding to the two symbols
with the lowest probabilities are offspring of the same node. Once we have connected the
leaves corresponding to the symbols with the lowest probabilities to a single node, we treat
this node as a symbol of a reduced alphabet. The probability of this symbol is the sum of
the probabilities of its offspring. We can now sort the nodes corresponding to the reduced
alphabet and apply the same rule to generate a parent node for the nodes corresponding to the
two symbols in the reduced alphabet with lowest probabilities. Continuing in this manner,
we end up with a single node, which is the root node. To obtain the code for each symbol,
we traverse the tree from the root to each leaf node, assigning a 0 to the upper branch and a
1 to the lower branch. This procedure as applied to the alphabet of Example 3.2.1 is shown
in Figure 3.2. Notice the similarity between Figures 3.1 and 3.2. This is not surprising, as
they are a result of viewing the same procedure in two different ways.

46 3 HUFFMAN CODING

ax(0.4) 04) (0.4) 0.6) 0
a,(0.2) w2y 0h 0 o4 1 (1.0)
a4(0.2) 0.2) 0] 0.2) 1

@(0.1) 0 02) th

as(0.1) 41

FIGURE 3. 2 Building the binary Huffman tree.

3.2.1 Minimum Variance Huffman Codes

By performing the sorting procedure in a slightly different manner, we could have found a
different Huffman code. In the first re-sort. we could place « higher in the list, as shown in
Table 3.6.

Now combine a, and a; into a}. which has a probability of 0.4. Sorting the alphabet a,.
a4, a} and putting a; as far up the list as possible, we get Table 3.7. Finally, by combining
a, and aj and re-sorting, we get Table 3.8. If we go through the unbundling procedure, we
get the codewords in Table 3.9. The procedure is summarized in Figure 3.3. The average
length of the code is

[=4x24+2x2+2%x24+.1 x3+.1x3=2.2 bits/symbol.

The two codes are identical in terms of their redundancy. However, the variance of the
length of the codewords is significantly different. This can be clearly seen from Figure 3.4,

TABLE 3.6 Reduced four-letter alphabet.

Letter Probability Codeword
a- 0.4 c(a,)
da 0.2 o
a, 0.2 c(ay)

dy 0.2 clay)

TABLE 3.7 Reduced three-letter alphabet.

Letter Probability Codeword
) 0.4 o,
a, 0.4 clay)

a 0.2 o,

3.2 The Huffman Coding Algorithm a7

TABLE 3.8 Reduced two-letter alphabet.

Letter Probability Codeword
a; 0.6 ay
a) 0.4 o
TABLE 3.9 Minimum variance Huffman code.
Letter Probability Codeword
a 0.2 10
as 04 00
d, 0.2 1t
a, 0.1 010
as 0.1 01l
, o_ .
a»(0.4) a-(0.4) ay0.4) —=da30.6)
a,(0.2) a(0.2) ag(o.4)}i I a0.4)
a;(0.2) a,(0.2) }() ay0.2)-1
a,(0.1)40 ax(0.2) -1
as(0.1) 21

FIGURE 3.3

The minimum variance Huffman encoding procedure.

s

| oay

v

FIGURE 3. 4

Two Huffman trees corresponding to the same probabilities.

Remember that in many applications, although you might be using a variable-length code.
the avatlable transmission rate is generally fixed. For example, if we were going to transmit
symbols from the alphabet we have been using at 10,000 symbols per second. we might ask
for transmission capacity of 22.000 bits per second. This means that during each second the
channel expects to receive 22.000 bits. no more and no less. As the bit generation rate will

48 3 HUFFMAN CODING

vary around 22.000 bits per second, the output of the source coder is generally fed into a
buffer. The purpose of the buffer is to smooth out the variations in the bit generation rate.
However. the buffer has to be of finite size. and the greater the variance in the codewords, the
more difficult the buffer design problem becomes. Suppose that the source we are discussing
generates a string of «;s and ass for several seconds. If we are using the first code, this
means that we will be generating bits at a rate of 40.000 bits per second. For each second.,
the bufter has to store 18,000 bits. On the other hand, if we use the second code. we would
be generating 30,000 bits per second, and the buffer would have to store 8000 bits for every
second this condition persisted. If we have a string of a,s instead of a string of a,s and ass,
the first code would result in the generation of 10,000 bits per second. Remember that the
channel will still be expecting 22,000 bits every second, so somehow we will have to make
up a deficit of 12,000 bits per second. The same situation using the second code would lead
to a deficit of 2000 bits per second. Thus, it seems reasonable to elect to use the second
code instead of the first. To obtain the Huffman code with minimum variance, we always
put the combined letter as high in the list as possible.

3.2.2 Optimality of Huffman Codes

The optimality of Huffman codes can be proven rather simply by first writing down the
necessary conditions that an optimal code has to satisty and then showing that satisfying
these conditions necessarily leads to designing a Huffman code. The proof we present here
is based on the proot shown in [16] and is obtained for the binary case (for a more general
proof, see [16]).

B Condition 1: Given any two letters a, and a,, if Pla;] > P{a;]. then I; <, where [,
is the number of bits in the codeword for a;.

8 Condition 2: The two least probable letters have codewords with the same maximum
length /.

We have provided the justification for these two conditions in the opening sections of this
chapter.

B Condition 3: In the tree corresponding to the optimum code. there must be two
branches stemming from each intermediate node.

If there were any intermediate node with only one branch coming from that node, we could
remove it without affecting the decipherability of the code while reducing its average length.

B Condition 4: Suppose we change an intermediate node into a leaf node by combining
all the leaves descending from it into a composite word of a reduced alphabet. Then.
if the original tree was optimal for the original alphabet. the reduced tree is optimal
for the reduced alphabet.

If this condition were not satisfied. we could find a code with smaller average code length
for the reduced alphabet and then simply expand the composite word again to get a new

3.2 The Huffman Coding Algorithm 49

code tree that would have a shorter average length than our original “optimum’™ tree. This
would contradict our statement about the optimality of the original tree.

In order to satisfy conditions 1, 2. and 3, the two least probable letters would have to be
assigned codewords of maximum length /,,. Furthermore, the leaves corresponding to these
letters arise from the same intermediate node. This is the same as saying that the codewords
for these letters are identical except for the last bif. Tonsider the common prefix as the
codeword for the composite letter of a reduced alphabet. Since the code for the reduced
alphabet needs to be optimum for the code of the criginal alphabet to be optimum. we
follow the same procedure again. To satisfy the necessary conditions. the procedure needs
to be iterated until we have a reduced alphabet of size one. But this is exactly the Huffman
procedure. Therefore, the necessary conditions above, which are all satistied by the Huffman
procedure. are also sufficient conditions.

3.2.3 Length of Huffman Codes x

We have said that the Huffman coding procedure generates an optimum code. but we have
not said what the average length of an optimum code is. The length of any code will depend
on a number of things, including the size of the alphabet and the probabilities of individual
letters. In this section we will show that the optimal code for a source 8. hence the Huffman
code for the source 8. has an average code length I bounded below by the entropy and
bounded above by the entropy plus 1 bit. In other words.

H(S) <1< H(S) +1. : (3.1)

In order for us to do this, we will need to use the Kraft-McMillan inequality introduced
in Chapter 2. Recall that the first part of this result. due to McMillan, states that if we have a
uniquely decodable code € with K codewords of length {/,}X . then the following inequality
holds:

(3.2)

[\/] >
u"
A

Example 3.2.2:

Examining the code generated in Example 3.2.1 (Table 3.5). the lengths of the codewords
are {1.2,3.4.4}. Substituting these values into the left-hand side ot Equation (3.2). we get

27ty 2 2 =
which satisfies the Kraft-McMillan inequality.
If we use the minimum variance code (Table 3.9). the lengths of the codewords are
{2.2,2.3,3}. Substituting these values into the left-hand side of Equation (3.2). we get

274274242 0 =

which again satisfies the inequality. ¢

50 3 HUFFMAN CODING

The second part of this result, due to Kraft, states that if we have a sequence of positive
integers {/;}X . which satisties (3.2), then there exists a uniquely decodable code whose
codeword lengths are given by the sequence {/,}¥ .

Using this result. we will now show the following:
1. The average codeword length [of an optimal code for a source § is greater than or

cqual to H(S).

2. The average codeword length / of an optimal code for a source § is strictly less than

H(S)+ 1.
For a source & with alphabet A = {a,,a,,...ay}, and probability model
{P(a;), P(a>),.... P(uy)}. the average codeword length is given by
K
[=3 Plal,.

Theretore. we can write the difference between the entropy of the source H(8) and the
average length as

K K
H(8)~1 = —3" P(a)log, P(a,) =Y P(a,)]

i=1 =1

K 1
;P(a,) (log2 {P(a,}} - 1,)

K 1
= - . o —] = 5 2/r
> _P(a;) <10b> [P(fl,)jl log,[])

i=]

1

Il

K =1,
> P(a;)log, l:;m]

i=1

IA

K
log, [Z 2":|.
py

The last inequality is obtained using Jensen’s inequality, which states that if f(x) is a concave
(convex cap. convex N) function, then E[f(X)] < f(E[X]). The log function is a concave
function.

As the code is an optimal code 3%, 27" < 1. therefore

H(8)—1<0. (3.3)

We will prove the upper bound by showing that there exists a uniquely decodable code with
average codeword length H(S) 4+ 1. Therefore. if we have an optimal code, this code must
have an average length that is less than or equal to H(8) + 1.

Given a source, alphabet, and probability model as before. define

1
[— l gy
’ {O“ P(aﬂ

3.2 The Huffman Coding Algorithm 51

where [x] is the smallest integer greater than or equal to x. For example. [3.3] =4 and
[5] = 5. Theretore.

[x]=x+¢ where) < e < 1.
Therefore,
0g> < 109, —— + |. .
T Pa) T =2 P(a,)

From the left inequality of (3.4) we can sec that
27 < P(a,).

Therefore,

K K

> 27k Z P(a,)

=] =1
and by the Kraft-McMillan inequality there exists a uniquely decodable code with codeword
lengths {/,}. The average length of this code can be upper-bounded by using the right
inequality of (3.4):

K

]
=) P P \—
; (a)l, < ,ZT (a,) {lot P +]j|

or

I < H(S)+ 1.

We can see from the way the upper bound was derived that this is a rather loose upper
bound. In fact, it can be shown that if p,_ . is the largest probability in the probability
model. then for p,,. > 0.5. the upper bound for the Huffman code is H(S) + p,,,. while for

P < 0.5, the upper bound is H(8) + p,,,, +0.086. Obviously, this is a much tighter bound
than the one we derived above. The derivation of this bound takes some time (see [23] for
details).

3.2.4 Extended Huffman Codes x

In applications where the alphabet size is large. p,,,. is generally quite small. and the amount
of deviation from the entropy. especially in terms of a percentage of the rate. is quite small.
However, in cases where the alphabet is small and the probability of occurrence of the
different letters is skewed. the value of p, . can be quite large and the Huffman code can
become rather inefficient when compared to the entropy.

[LIREN

Example 3.2.3:

Consider a source that puts out iid letters from the alphabet A = {a,.a,.a;} with the
probability model P(a;) = 0.8. P(a,) =0.02. and P(a;) = 0.18. The entropy for this source
is 0.816 bits/symbol. A Huffman code for this source is shown in Table 3.10.

52 3 HUFFMAN CODING

TABLE 3.10 Huffman code for
the alphabet 1.

Letter Codeword
a, 0
a- 11
as 10

The average length for this code is 1.2 bits/symbol. The difference between the average
code length and the entropy. or the redundancy. for this code is 0.384 bits/symbol, which is
47% of the entropy. This means that to code this sequence we would need 47% more bits
than the minimum required. ¢

We can sometimes reduce the coding rate by blocking more than one symbol together.
To see how this can happen. consider a source S that emits a sequence of letters from an
alphabet 4 = {a,,as..... a,,}. Each element of the sequence is generated independently of
the other elements in the sequence. The entropy for this source is given by

m

H(S) = =) P(a,)log, P(a,).
=1

We know that we can generate a Huffman code for this source with rate R such that
H(S) <R < H(S)+ 1. (3.5)

We have used the looser bound here: the same argument can be made with the tighter
bound. Notice that we have used “rate R™ to denote the number of bits per symbol. This is
a standard convention in the data compression literature. However, in the communication
literature, the word “rate™ often refers to the number of bits per second.

Suppose we now encode the sequence by generating one codeword for every n symbols.
As there are m" combinations of n symbols, we will need m” codewords in our Huffman
code. We could generate this code by viewing the m" symbols as letters of an extended
alphabet

numes

(ny p—
A" ={aya,.. . aj qa,. . ay. o Lavay. . a, a0, asa,. L aya,,. . a,l

from a source S, Let us denote the rate for the new source as R'"'. Then we know that
H(S"™) < R"™ < H(S") + 1. (3.6)

R"" is the number of bits required to code n symbols. Therefore, the number of bits required
per symbol, R, is given by

I
R=—-R".
n

3.2 The Huffman Coding Algorithm 53

The number of bits per symbol can be bounded as

H S(nl H S(n) |
(S") _ o HE™) 1
n n 1

In order to compare this to (3.5). and see the advantage we get from encoding symbols
in blocks instead of one at a time. we need to express H(S"') in terms of H(S). This turns
out to be a relatively easy (although somewhat messy) thing to do.

m m m

H(ES™)y ==Y Y ... > P(a; ,aq;,...a;)log|P(a, a,....a)]

n=1i=l 4=l

m m m

=22 2 Pa,)P(a). .. Pla,)log[P(a,)P(a,). .. Pa,)]

=1

f=11ir=1 i,

n m m

-2 .. Y Pla,)P(a,). .. P(a,) log[P(a;)]
=1

n=li=1 i,=1

il

H

— i P(ll,“)log[[)(d:,)] Z e Z P(a':)' e P(a"')}

=1 =1 =1

— 2 Pla)log[P(a)] > ... 3 Pla,)Pla,). .. P(a,”))

in=1 LH=1i=1 i,=1

— Y Pla,)log[P(a)]{> > ... P(a,)P(a;). .. P(a,"l)]

i, =1 g=lir=l (=1

The n — 1 summations in braces in each term sum to one. Therefore,

m m m

— > P(a,)log[P(a,)]— 3 P(a;)log[P(a,)] =---— > P(a,)log[P(a,)]

i=1 ir=1 iy=1

H(S(n))

Il

I

I
-

%)
~

and we can write (3.6) as
1
H(S) <R < H(S)+-. (3.7)
n

Comparing this to (3.5). we can see that by encoding the output of the source in longer
blocks of symbols we are guaranteed a rate closer to the entropy. Note that all we are talking
about here is a bound or guarantee about the rate. As we have seen in the previous chapter,
there are a number of situations in which we can achieve a rate equal to the entropy with a
block length of one!

54 3 HUFFMAN CODING

Example 3.2.4:

For the source described in the previous example. instead of generating a codeword for
every symbol. we will generate a codeword for every nvo symbols. If we look at the source
sequence two at a time. the number of possible symbol pairs, or size of the extended alphabet.
is 3* = 9. The extended alphabet. probability model. and Hutfman code for this example are
shown in Table 3.11.

TABLE 3.11 The extended alphabet and
corresponding Huffman code.

Letter Probability Code
apa, 0.64 0

ad, 0.016 10101
dyd; 0.144 I

s, 0.016 101000
d~ds 0.0004 10100101
asdy 0.0036 1010011
asa, 0.1440 100

axd, 0.0036 10100100
Uy 0.0324 1011

The average codeword length for this extended code is 1.7228 bits/symbol. However,
each symbol in the extended alphabet corresponds to two symbols from the original alphabet.
Therefore. in terms of the original alphabet. the average codeword length is 1.7228/2 =
0.8614 bits/symbol. This redundancy is about 0.045 bits/symbol. which is only about 5.5%
of the entropy. ¢

We see that by coding blocks of symbols together we can reduce the redundancy of
Huffman codes. In the previous example. two symbols were blocked together to obtain a
rate reasonably close to the entropy. Blocking two symbols together means the alphabet
size goes from m to m”, where m was the size of the initial alphabet. In this case. m was
three. so the size of the extended alphabet was nine. This size is not an excessive burden
for most applications. However. if the probabilities of the symbols were more unbalanced.
then it would require blocking many more symbols together before thé redundancy lowered
to acceptable levels. As we block more and more symbols together, the size of the alphabet
grows exponentially. and the Huffman coding scheme becomes impractical. Under these
conditions. we need to look at techniques other than Huffman coding. One approach that is
very useful in these conditions is arithmetic coding. We will discuss this technique in some
detail in the next chapter.

3.3 Nonbinary Huffman Codes % 55

3.3 Nonbinary Huffman Codes x

The binary Huffman coding procedure can be easily extended to the nonbinary case where the
code elements come from an m-ary alphabet. and m is not equal to two. Recall that we obtained
the Huffman algorithm based on the observations that in an optimum binary prefix code

1. symbols that occur more frequently (have a higher probability of occurrence) will
have shorter codewords than symbols that occur less trequently. and

2. the two symbols that occur least frequently will have the same length,

and the requirement that the two symbols with the lowest probability differ only in the last
position.

We can obtain a nonbinary Huffman code in almost exactly the same way. The obvious
thing to do would be to modify the second observation to read: “The m symbols that occur
least frequently will have the same length.” and also modity the additional requirement to
read “The m symbols with the lowest probability differ only in the last position.”

However. we run into a small problem with this approach. Consider the design of a
ternary Huffman code for a source with a six-letter alphabet. Using the rules described
above. we would first combine the three letters with the lowest probability into a composite
letter. This would give us a reduced alphabet with four letters. However. combining the three
letters with lowest probability from this alphabet would result in a further reduced alphabet
consisting of only two letters. We have three values to assign and only two letters. Instead
of combining three letters at the beginning. we could have combined two letters. This would
result in a reduced alphabet of size five. If we combined three letters from this alphabet. we
would end up with a tinal reduced alphabet size of three. Finallv, we could combine two
letters in the second step. which would again result in a final reduced alphabet of size three.
Which alternative should we choose?

Recall that the symbols with lowest probability will have the longest codeword. Fur-
thermore. all the symbols that we combine together into a composite symbol will have
codewords of the same length. This means that all letters we combine together at the very
tirst stage will have codewords that have the same length. and these codewords will be the
longest of all the codewords. This being the case. it at some stage we are allowed to combine
less than m symbols, the logical place to do this would be in the very first stage.

In the general case of an m-ary code and an M-letter alphabet. how many letters should
we combine in the first phase? Let m' be the number of letters that are combined in the first
phase. Then " is the number between two and m, which i equal to M modulo (m —1).

Example 3.3.1: _ /3299%

i

Generate a ternary Huffman code for a source with a six-letter alphabet.and a prob;lbiliiAll\A
model P(a,) = Pla;) = Pla,) =0.2. Plas) = 0.25. Pla,) = 0.1, and P(a,) = 0.05" T this..
case m = 3, therefore m' is either 2 or 3.

6 (mod 2)y=0. 2 (mod 2)=0. 3 (mod2)y=1

56 3 HUFFMAN CODING

Since 6 {mod 2) =2 (mod 2). m' = 2. Sorting the symbols in probability order results in
Table 3.12.

TABLE 3.12 Sorted six-letter alphabet.

Letter Probability Codeword
ds 0.25 c(as)
a, 0.20 clay)
ay 0.20 c(ay)
a, 0.20 c(ay)
ag 0.10 cag)
a, 0.05 clay)

As m’ is 2, we can assign the codewords of the two symbols with lowest probability as

clag) = «; %0

cla,) = a;*1

where a is a ternary string and * denotes concatenation. The reduced alphabet is shown in
Table 3.13.

TABLE 3.13 Reduced five-letter alphabet.

Letter Probuability Codeword
as 0.25 clas)
da, 0.20 clay)
oy 0.20 cluy)
a, 0.20 clay)
a S 0.15 o,

6

Now we combine the three letters with the lowest probability into a composite letter a
and assign their codewords as

But ¢(«;) = «,. Therefore.

3.3 Nonbinary Huffman Codes % 57

which means that
c(ag) = o, %20
c(a,) = o, x21.

Sorting the reduced alphabet, we have Table 3.14. Thus, a, = 0. ¢(as) = 1. and ¢(a,) = 2.
Substituting for «,. we get the codeword assignments in Table 3.15.

TABLE 3.14 Reduced three-letter alphabet.

Letter Probability Codeword
ay 0.45 a,
s 0.25 c(as)
a, 0.20 clay)

TABLE 3.15 Ternary code for six-letter alphabet.

Letter Probability Codeword
a, 0.20 2
as 0.05 021
a 0.20 00
a, 0.20 01
ds 0.25 1
a, 0.10 020

The tree corresponding to this code is shown in Figure 3.5. Notice that at the lowest
level of the tree we have only two codewords. If we had combined three letters at the first
step. and combined two letters at a later step. the lowest level would have contained three
codewords and a longer average code length would result (see Problem 7).

/N

/()12
/‘\
/
()IZ
[)
01
\

/

Uy,

FIGURE 3. 5 Code tree for the nonbinary Huffman code. ¢

58 3 HUFFMAN CODING

3.4 Adaptive Huffman Coding

Hutfman coding requires knowledge of the probabilities of the source sequence. If this
knowledge is not available, Huffman coding becomes a two-pass procedure: the statistics are
collected in the first pass, and the source is encoded in the second pass. In order to convert
this algorithm into a one-pass procedure. Faller [24] and Gallagher [23] independently
developed adaptive algorithms to construct the Huffman code based on the statistics of the
symbols already encountered. These were later improved by Knuth [25] and Vitter [26].

Theoretically. if we wanted to encode the (k+1)-th symbol using the statistics of the first
k symbols. we could recompute the code using the Huffman coding procedure cach time a
symbol is transmitted. However. this would not be a very practical approach due to the large
amount of computation involved—hence. the adaptive Huffman coding procedures.

The Huffman code can be described in terms of a binary tree similar to the ones shown
in Figure 3.4. The squares denote the external nodes or leaves and correspond to the symbols
in the source alphabet. The codeword for a symbol can be obtained by traversing the tree
from the root to the leaf corresponding to the symbol. where 0 corresponds to a left branch
and 1 corresponds to a right branch. In order to describe how the adaptive Huffman code
works. we add two other parameters to the binary tree: the weighr of each leaf. which is
written as a number inside the node. and a node number. The weight of each external node is
simply the number of times the symbol corresponding to the leat has been encountered. The
weight of each internal node is the sum of the weights of its offspring. The node number v,
Is & unique number assigned to cach internal and external node. If we have an alphabet of
size n. then the 2n — 1 internal and external nodes can be numbered as v,.. . .. Y., such
that it v, is the weight of node v, we have ¥, <x, <-.- < X, . Furthermore. the nodes
¥, and v, are offspring of the same parent node. or siblings. for 1 < j < n. and the node
number for the parent node is greater than v, | and v,,. These last two characteristics are
called the sibling property. and uny tree that possesses this property is a Huffman tree [23].

In the adaptive Huffman coding procedure. neither transmitter nor receiver knows any-
thing about the statistics of the source sequence at the start of transmission. The tree at both
the transmitter and the receiver consists of a single node that corresponds to all symbols not
vet transmitted (NYT) and has a weight of zero. As transmission progresses, nodes corre-
sponding to symbols transmitted will be added to the tree. and the tree is reconfigured using
an update procedure. Before the beginning of transmission. a fixed code for each symbol is
agreed upon between transmitter and receiver. A simple (short) code is as follows:

It the source has an alphabet (a,.as. a,) of size m. then pick ¢ and r such that
m=2"+rand 0 <7< 2 The letter ¢; is encoded as the (¢ + 1)-bit binary representation
of K=1.0f 1 <k < 2rielses a is encoded as the e-bit binary representation of & —r — 1.
For example. suppose m = 26. then ¢ = 4. and r = 10. The symbol «a, is encoded as 00000,
the symbol - is encoded as 00001, and the symbol ¢+ is encoded as 1011,

When a symbol is encountered for the first time. the code for the NYT node is transmitted.
followed by the fixed code for the symbol. A node for the symbol is then created. and the
symbol is taken out of the NYT list.

Both transmitter and receiver start with the sume tree structure. The updating procedure
used by both transmitter and receiver is identical. Theretore. the encoding and decoding
processes remain sviachronized.

3.4 Adaptive Huffman Coding

3.4.1

The update procedure requires that the nodes be in a fixed order. This ordering is preserved
by numbering the nodes. The largest node number is given to the root of the tree. and the
smallest number is assigned to the NYT node. The numbers from the NYT node to the root
of the tree are assigned in increasing order from left to right. and from lower level to upper
level. The set of nodes with the same weight makes up a block. Figure 3.6 is a flowchart of

the updating procedure.

NYT gives birth 1 Y
to new NYT and
external node

I

'

Increment weight
of external node
and old NYT node

[
f————

Y

Go to old
NYT node

, _

Update Procedure

| START |
(-
- J
¥
/.

7 -

First N
appearance
for symbol?

i No

| Go 1o symbol
external node

__J

l .

No | Switch node with }\
|
|
\

mber max
Au cr \—*fﬂ highest numbered

in block’ ’/ ‘
AN node in block
\ % L—

Yes ‘

—
I
| [ncrement |

I node weight ;

=

/I\ [h|\\ No T_ o

the root | Go o
N\ hode? i parent node
N I
\\
Yes
(STOP 1
-

FIGURE 3. 6

Update procedure for the adaptive Huffman coding algorithm.

60 3 HUFFMAN CODING

The function of the update procedure is to preserve the sibling property. In order that the
update procedures at the transmitter and receiver both operate with the same information. the
tree at the transmitter is updated after cach symbol is encoded. and the tree at the receiver
is updated after each symbol is decoded. The procedure operates as follows:

After a symbol has been encoded or decoded. the external node corresponding to the
symbol 1s examined to sce it it has the largest node number in its block. If the external
node does not have the largest node number. it is exchanged with the node that has the
largest node number in the block. as long as the node with the higher number is not the
parent of the node being updated. The weight of the external node is then incremented. If
we did not exchange the nodes before the weight of the node is incremented. it is very
likely that the ordering required by the sibling property would be destroved. Once we have
incremented the weight of the node. we have adapted the Huffiman tree at that level. We
then turn our attention to the next level by examining the parent node of the node whose
weight was incremented to sce it it has the largest number in its block. If it does not. it is
exchanged with the node with the largest number in the block. Again. an exception to this is
when the node with the higher node number is the parent of the node under consideration.
Once an exchange has taken place (or it has been determined that there is no need for
an exchange). the weight of the parent node is incremented. We then proceed to a new
parent node and the process is repeated. This process continues until the root of the tree is
reached.

If the symbol to be encoded or decoded has occurred tor the first time. a new external
node is assigned to the symbol and a new NYT node is appended to the tree. Both the new
external node and the new NYT node are offsprings of the old NYT node. We increment
the weight of the new external node by one. As the old NYT node is the parent of the new
external node. we increment its weight by one and then go on to update all the other nodes
until we reach the root of the tree.

Example 3.4.1: Update procedure

Assume we are encoding the message [aard v ar k], where our alphabet consists of the
26 lowercase letters of the English alphabet.

The updating process is shown in Figure 3.7 We begin with only the NYT node. The
total number of nodes in this tree will be 2 x 26— 1 = 51. 50 we start numbering backwards
from S1 with the number of the root node being 51, The first letter to be transmitted is .
As a does not yet exist in the tree. we send a binary code 00000 for @ and then add « to
the tree. The NYT node gives birth to a new NYT node and a terminal node corresponding
o a. The weight of the terminal node will be higher than the NYT node. so we assign
the number 49 10 the NYT node and 50 to the terminal node corresponding to the letter
a. The second letter to be transmitted is also «. This time the transmitted code is 1. The
node corresponding to « has the highest number (it we do not consider its parent). so we
do not need to swap nodes. The next letter to be transmitted is . This letter does not have
a corresponding node on the tree. so we send the codeword for the NYT node. which is 0
followed by the index of 7. which is 10001. The NYT node gives birth to a new NYT node
and an external node corresponding o r. Again. no update is required. The next letter to
be transmitted is o, which is also being sent tor the first time. We again send the code for

3.4 Adaptive Huffman Coding 61

51

NYT| 0O NYT| O
51 49

(a) (aa) NYT| 0O

NYT| 0O

(aardv) (aardv)

FIGURE 3.7 Adaptive Huffman tree after [aar d v] is processed.

the NYT node. which is now 00 followed by the index for . which is 00011, The NYT
node again gives birth to two new nodes. However. an update is still not required. This
changes with the transmission of the next letter. v. which has also not yet been encountered.
Nodes 43 and 44 are added to the tree. with 44 as the terminal node corresponding to v. We
examine the grandparent node of v (node 47) to see if it has the largest number in its block.
As it does not, we swap it with node 48, which has the largest number in its block. We then
increment node 48 and move to its parent. which is node 49. In the block containing node
49, the largest number belongs to node 50. Theretore. we swap nodes 49 and 50 and then
increment node 50. We then move to the parent node of node 50. which is node 51. As this
1s the root node. all we do is increment node S1. ¢

62 3 HUFFMAN CODING

3.4.2 Encoding Procedure

The tlowchart tor the encoding procedure is shown in Figure 3.8. Initially. the tree at both
the encoder and decoder consists of a single node, the NYT node. Therefore. the codeword
for the very first symbao! that appears is a previously agreed-upon fixed code. After the very
first symbol. whenever we have to encode a symbol that is being encountered for the first
time. we send the code for the NYT node. followed by the previously agreed-upon tixed
code for the symbol. The code for the NYT node is obtained by traversing the Huftman tree
from the root to the NYT node. This alerts the receiver to the fact that the symbol whose
code follows does not as yet have a node in the Huffman tree. If a symbol to be encoded
has a corresponding node in the tree. then the code tor the symbol is generated by traversing
the tree from the root to the external node corresponding to the symbol.

START |

LS

Read in symbol =

/ AN
Is this '\
Yes the first O\ NoO

— appearance

AN i /
N of the
v Nsymhol? / Y
N /
T A4 - . :
Send code for NYT A% Code is the path from

¢ the root node to the
corresponding node

node followed by
index in the NYT list

Call update }
procedure

/I.\‘ this the \ No
last .\ymho]"/

+ Yes

L VST()P }

S——

FIGURE 3. 8 Flowchart of the encoding procedure.

3.4 Adaptive Huffman Coding 63

To see how the coding operation functions, we use the same example that was used to
demonstrate the update procedure,

Example 3.4.2: Encoding procedure

In Example 3.4.1 we used an alphabet consisting of 26 letters. In order to obtain our
prearranged code. we have to find m and ¢ such that 2° 4 r = 26, where 0 < r < 2 It is
easy to see that the values of ¢ =< and r == 10 satisfy this requirement.

The first symbol encoded is the letter a. As a is the first letter of the alphabet. k = 1.
As 1 is less than 20, « is encoded as the 5-bit binary representation of & — 1. or 0, which
1s 00000. The Huffman tree is then updated as shown in the figure. The NYT node gives
birth to an external node corresponding to the element ¢ and a new NYT node. As «a has
occurred once. the external node corresponding to « has a weight of one. The weight of
the NYT node is zero. The internal node also has a weight of one, as its weight is the sum
of the weights of its offspring. The next svmbol is again a. As we have an external node
corresponding to symbol a. we simply traverse the tree from the root node to the external
node corresponding to « in order to find the codeword. This traversal consists of a single
right branch. Therefore. the Huffman code for the svmbol « is 1.

After the code tor ¢ has been transmitted. the weight of the external node corresponding
to « is incremented. as is the weight of its parent. The third symbol to be transmitted is r.
As this is the first appearance ot this symbol. we send the code for the NYT node followed
by the previously arranged binary representation for r. If we traverse the tree from the root
to the NYT node. we get a cade of 0 for the NYT node. The letter r is the 18th letter of
the alphabet: therefore. the binary representation of r is 10001, The code for the symbol r
becomes 010001, The tree is again updated as shown in the figure. and the coding process
continues with symbol d. Using the same procedure for ¢/, the code for the NYT node.
which is now 00. is sent. followed by the index for d. resulting in the codeword 000001 1.
The next symbol v is the 22nd symbol in the alphabet. As this is greater than 20, we send
the code for the NYT node followed by the 4-bit binary representation of 22 — 10— 1= 11.
The code for the NYT node at this stage is 000. and the 4-bit binary representation of 11
is 1011 therefore. v is encoded as 0001011, The next symbol is a. for which the code is 0,
and the encoding proceeds. ¢

3.4.3 Decoding Procedure

The flowchart for the decoding procedure is shown in Figure 3.9, As we read in the received
binary string. we traverse the tree in a manner identical to that used in the encoding procedure.
Once a leaf is encountered. the symbol corresponding to that leaf is decoded. If the leaf
is the NYT node. then we check the next ¢ bits to see if the resulting number is less than
ro It it is less than . we read in another bit to complete the code for the symbol. The
index for the symbol is obtained by adding one to the decimal number corresponding to
the - or ¢+ I-bit binary string. Once the symbol has been decoded, the tree is updated
and the next received bit 1s used to start another traversal down the tree. To see how this
procedure works. let us decode the binary string generated in the previous example.

64 3 HUFFMAN CODING

Go to root
of the tree

, Is the | No Read bit and go to
node an externa corresponding node

node?

Yes

Read e bits

Is the
Decode elcment e-bit number p Add rtop
corresponding less than r?
to node

Yes

Read one more bit

Call update Decode the (p + 1)

procedure element in NYT list

Is this

No
the last hit‘?)

FIGURE 3.9 Flowchart of the decoding procedure.

3.5 Golomb Codes 65

Example 3.4.3: Decoding procedure
The binary string generated by the encoding procedure is
00000101000 1000001 100010110

Initially, the decoder tree consists only of the NYT node. Therefore. the first symbol to be
decoded must be obtained from the NYT list. We read in the first 4 bits, 0000, as the value
of ¢ is four. The 4 bits 0000 correspond 1o the decimal value of 0. As this is less than the
value of r. which is 10, we read in one more bit for the entire code of 00000. Adding one
to the decimal value corresponding to this binary string. we get the index of the received
symbol as 1. This is the index for «: therefore. the first Ietter is decoded as «. The tree is
now updated as shown in Figure 3.7. The next bit in the string is 1. This traces a path from
the root node to the external node corresponding to «. We decode the symbol ¢ and update
the tree. In this case. the update consists only of incrementing the weight of the external
node corresponding to «. The next bit is & 0. which traces a path from the root to the NYT
node. The next 4 bits. 1000, correspond to the decimal number 8, which is less than 10, so
we read in one more bit to get the 5-bit word 10001, The decimal equivalent of this 5-bit
word plus one is 18, which is the index for . We decode the symbol r and then update the
tree. The next 2 bits. 00. aguin trace a path to the NYT node. We read the next 4 bits, 0001,
Since this corresponds to the decimal number 1. which is less than 10, we read another bit
to get the 5-bit word 0001 1. To get the index of the received symbol in the NYT list. we add
one to the decimal value ot this 5-bit word. The value of the index is 4. which corresponds
to the symbol «. Continuing in this fashion. we decode the sequence aardva. ¢

Although the Hutffman coding algorithm is one of the best-known variable-length coding
algorithms. there are some other lesser-known algorithms that can be very useful in cer-
tain situations. In particular, the Golomb-Rice codes and the Tunstall codes are becoming
increasingly popular. We describe these codes in the following sections.

3.5 Golomb Codes

The Golomb-Rice codes belong to a family of codes designed to encode integers with the
assumption that the larger an integer. the lower its probability of occurrence. The simplest
code for this situation is the unary code. The unary code for a positive integer n is simply
n 1s followed by a 0. Thus, the code for 4 is 11110, and the code for 7 is 11111110, The
unary code is the same as the Huffman code for the semi-infinite alphabet {t.2.3....} with
probability model

Plk] = i

. A

Because the Huffman code is optimal. the unary code is also optimal for this probability model.
Although the unary code is optimal in very restricted conditions. we can see that it is
certainly very simple to implement. One step higher in complexity are a number of coding
schemes that split the integer into two parts. representing one part with a unary code and

66 3 HUFFMAN CODING

the other part with a different code. An example of such a code is the Golomb code. Other
examples can be found in [27].

The Golomb code is described in a succinet paper [28] by Solomon Golomb. which
begins “Secret Agent 00111 is back at the Casio again, playing a game of chance. while
the fate of mankind hangs in the balance.” Agent 00111 requires a code to represent runs of
success in a roulette game. and Golomb provides it! The Golomb code is actually a family
of codes parameterized by an integer m > 0. In the Golomb code with parameter m, we
represent an integer n > 0 using two numbers ¢ and r, where

n
- 12]
m

F=n-—qm.

and

[x] is the integer part of x. In other words, ¢ is the quotient and r is the remainder when
n is divided by m. The quotient ¢ can take on values 0, 1.2, ... and is represented by the
unary code of ¢. The remainder » can take on the values 0.1, 2., m— 1. If m is a power
of two, we use the log, m-bit binary representation of r. If m is not a power of two, we
could still use [log, m] bits. where [x] is the smallest integer greater than or equal to x. We
can reduce the number of bits required if we use the |log, m|-bit binary representation of r
for the first 270" — i values. and the [log, m]-bit binary representation of r+ 218" —
for the rest of the values.

Example 3.5.1: Golomb code
Let’s design a Golomb code for m = 5. As

[log,5T=3, and [log,5]=2

the first 8 =5 = 3 values of r (that is. »r =0, 1. 2) will be represented by the 2-bit binary
representation of r. and the next two values (that 1s. r = 3. 4) will be represented by the
3-bit representation of r + 3. The quotient ¢ 1s always represented by the unary code for ¢.
Thus, the codeword for 3 1s 0110, and the codeword for 21 is 1111001. The codewords for
n =0, 15 are shown in Table 3.16.

TABLE 3.16 Golomb code for m = 5.

n g r Codeword n q r Codeword
0 0 0 000 8 | 3 10110

1 0 1 001 9 | 4 10111

2 0 2 010 10 2 0 11000

3 0 3 0110 11 2 | 11001

4 0 4 0111 12 2 2 11010

5 | 0 1000 13 2 3 110110
6 1 | 1001 14 2 4 110111
7 | 2 1010 15 3 0 111000

3.6 Rice Codes 67

It can be shown that the Golomb code is optimal for the probability model

P(n)=p" 'q. g=1-p

1
m=|—-—-—-.
log, p

when

3.6 Rice Codes

The Rice code was originally developed by Robert F. Rice (he called it the Rice machine)
[29. 30] and later extended by Pen-Shu Yeh and Warner Miller [31]. The Rice code can be
viewed as an adaptive Golomb code. In the Rice code. a sequence of nonnegative integers
(which might have been obtained from the preprocessing ot other data) is divided into blocks
of J integers apicce. Each block is then coded using one of several options, most of which
are a form of Golomb codes. Each block is encoded with cach of these options. and the
option resulting in the least number of coded bits is selected. The particular option used is
indicated by an identifier attached to the code for each block.

The easiest way to understand the Rice code is to examine one of its implementations.
We will study the implementation of the Rice code in the recommendation for lossless
compression from the Consultative Committee on Space Data Standards (CCSDS).

3.6.1 CCSDS Recommendation for Lossless
Compression

As an application of the Rice algorithm. let’s briefly look at the algorithm for lossless data
compression recommended by CCSDS. The algorithm consists of a preprocessor (the mod-
eling step) and a binary coder (coding step). The preprocessor removes correlation from the
input and generates a sequence of nonnegative integers. This sequence has the property that
smaller values are more probable than larger values. The binary coder gencerates a bitstream
to represent the integer sequence. The binary coder is our main focus at this point.

The preprocessor functions as follows: Given a sequence {v,}. for each v, we generate a
prediction ¥,. A simple way to generate a prediction would be to take the previous value of
the sequence to be a prediction of the current value of the sequence:

We will look at more sophisticated ways of generating a prediction in Chapter 7. We then
generate a sequence whose clements are the difference between v, and its predicted value ¥;:

The ; value will have a small magnitude when our prediction is good and a large value
when it is not. Assuming an accurate modeling of the data. the former situation is more
likely than the latter. Let v, and v,,, be the largest and smallest values that the sequence

max Sfmin

68 3 HUFFMAN CODING

fv b takes on Ttis reasonable to assume that the value of ¥ will he confined io the range
[,VHHH' Ym.x\l' [)etlnc

To=minfy, —Vv.v—yv. } (3.8)

The sequence {d) can he converted into a sequence of nonnegative integers {v,} using

the foltowing mapping:

2d, O<d =T
LE2ld -1 =T nd, <) (3.9)
I +1d| otherwise.

The value of v, will be small whenever the magnitude of ¢, is small. Therefore, the value
of x, will be small with tigher probability. The sequence {v) is divided into segments with
cach segment being further divided into blocks of size J. 1tis recommended by CCSDS that
J have a value of 16, Each block is then coded using one of the following options. The
coded block is trunsmitted along with an identifier that indicates which particular option was
used.

B Fundamental sequence: This is a unary code. A number 1 is represented by a
sequence of 72 Os followed by a 1 (or a sequence of 1 1s followed by 1 0).

B Split sample options: These options consist of a set of codes indexed by a parameter
m. The code for a k-bit number # using the mith split sample option consists of the
m-least significant bits ot & tollowed by a unary code representing the A - most
significant bits. For example. suppose we wanted to encode the 8-bit number 23 using
the third split sample option. The 8-bit representation of 23 is 0001011 1. The three
leastsigniticant bits are F11. The remaining bits (00010) correspond to the number 2.
which has @ unary code 001, Therefore. the code for 23 using the third split sample
option is 111011, Notice that different values of s will be preterable for difterent
values of v, with higher values of m used for higher-entropy sequences.,

B Second extension option: The second extension option is useful for sequences with
low entropy—when. in general. many of the values of v, will be zero. In the second
extension option the sequence is divided into consceutive pairs of samples. Each pair
is used o obtain an index y using the tollowing transtormation:

.
] i
Y= S ey, Dy (3.10)
and the value of y is encoded using o unary code. The value of y is an index 1o a
lookup table with cach value of y corresponding to a pair of values v,y

[

B Zero block option: The zero block option is used when one or more of the blocks off
X are zero—-generally when we have long sequences of v that have the same value. In
this case the number of zero blocks are transmitted using the code shown in Table 3.17.
The ROS code is used when the fast tive or more blocks in a segment are all zero.

The Rice code has been used in several space applications. and variations of the Rice
code have been proposed for a number ot different applications.

3.7 Tunstall Codes 69

TABLE 3.17 Code used for xero block option.

Number of All-Zero Blocks Codeword
I 1
2 01
3 001
4 0001
5 000001
6 0000001
£308
63 00001
ROS 00001

3.7 Tunstall Codes

Most ot the variable-length codes that we look at in this book encode letters from the source
alphabet using codewords with varying numbers of bits: codewords with fewer bits for
letters that occur more frequently and codewords with more bits for letters that occur less
frequently. The Tunstall code is an important exception. In the Tunstall code. all codewords
are of equal length. However, each codeword represents a different number of letters. An
example of a 2-bit Tunstall code tor an alphabet A = {A. B} is shown in Table 3.18. The
main advantage of a Tunstall code is that errors in codewords do not propagate, unlike other
variable-length codes, such as Huffman codes, in which an error in one codeword will cause
a series of errors to occur.

Example 3.7.1:

Let's encode the sequence AAABAABAABAABAAA using the code in Table 3.18. Starting
at the left, we can sece that the string AAA occurs in our codebook and has a code of
00. We then code B as 11 AAB as 01, and so on. We finally end up with coded string
001101010160, ¢

TABLE 3.18 A 2-bit Tunstall code.

Sequence Codeword
AAA 00
AAB 0l
AB 10

B 11

70 3 HUFFMAN CODING

TABLE 3.19 A 2-bit (non-Tunstall) code.

Sequence Codeword
AAA 00
ABA 01
AB 10
B 11

The design of a code that has a fixed codeword length but a variable number of symbols
per codeword should satisty the following conditions:

1. We should be able to parse a source output sequence into sequences of symbols that
appear in the codebook.

2. We should maximize the average number of source symbols represented by each
codeword.

In order to understand what we mean by the first condition. consider the code shown in
Table 3.19. Let's encode the same sequence AAABAABAABAABAAA as in the previous
example using the code in Table 3.19. We first encode AAA with the code 00. We then
encode B with 11. The next three symbols are AAB. However, there are no codewords
corresponding to this sequence of symbols. Thus. this sequence is unencodable using this
particular code—not a desirable situation.

Tunstall [32] gives a simple algorithm that fulfills these conditions. The algorithm is as
follows:

Suppose we want an n-bit Tunstall code for a source that generates iid letters from an
alphabet of size N. The number of codewords is 2". We start with the N letters of the
source alphabet in our codebook. Remove the entry in the codebook that has the highest
probability and add the N strings obtained by concatenating this letter with every letter
in the alphabet (including itself). This will increase the size of the codebook from N to
N 4 (N —1). The probabilities of the new entries will be the product of the probabilities of
the letters concatenated to form the new entry. Now look through the N + (N —) entries
in the codebook and find the entry that has the highest probability. keeping in mind that the
entry with the highest probability may be a concatenation of symbols. Each time we pertform
this operation we increase the size of the codebook by N — 1. Theretore, this operation can
be performed K times, where

N+K(N—-1)<2".

Example 3.7.2: Tunstall codes
Let us design a 3-bit Tunstall code for a memoryless source with the following alphabet:
A=1{A.B.C)
P(A)=0.6. P(B)y=0.3. PC)=0.1

3.7 Tunstall Codes 71

TABLE 3. 20 Source alphabet and
associated probabilities.

Letter Probability
A 0.60
0.30
C 0.10

TABLE 3. 21 The codebook after
one iteration.

Sequence Probability
B 0.30
C 0.10
AA 0.36
AB 0.18
AC 0.06

TABLE 3.22 A 3-bit Tunstall code.

Sequence Probability
B 000
C 001
AB 010
AC 011
AAA 100
AAB 101
AAC 110

We start out with the codebook and associated probabilitics shown in Table 3.20. Since
the letter A has the highest probability, we remove it from the list and add all two-letter
strings beginning with A as shown in Table 3.21. After onc iteration we have 5 entries in
our codebook. Going through one more iteration will increase the size of the codebook by 2.
and we will have 7 entries, which is still less than the final codebook size. Going through
another iteration after that would bring the codebook size to 10. which is greater than the
maximum size of 8. Therefore. we will go through just one more iteration. Looking through
the entries in Table 3.22. the entry with the highest probability is AA. Therefore, at the next

Tunstall code is shown in Table 3.22. ¢

72 3 HUFFMAN CODING

3.8 Applications of Huffman Coding

In this section we describe some applications of Huffman coding. As we progress through the
book. we will describe more applications. since Huffman coding is often used in conjunction
with other coding techniques.

3.8.1 Lossless Image Compression

A simple application of Huftman coding to image compression would be to generate a
Huftman code for the set of values that any pixel may take. For monochrome images. this
set usually consists of integers from 0 to 255. Examples of such images are contained in the
accompanying data sets. The four that we will use in the examples in this book are shown
in Figure 3.10.

FIGURE 3. 10 Test images.

3.8 Applications of Huffman Cading 73

LY

TABLE 3.23 Compression using Huffman codes on pixel values.
Image Name Bits/Pixel Total Size lh\lu) Compression Ratio
Sena 7.01 STS04 114
Sensin 7449 61,430 1.07
Earth 4.94 40534 1.62
Omaha 702 58374 112

We will make use of one of the programs trom the accompunying software (see Preface)
lo generate o Huftman code tor cach image., and then encode the im age using the Huffman
code. The results for the tour images in Figure 3.10 are shown in Table 3.23. The Huffman
code is stored along with the compressed image as the code will be required by the decoder
to reconstruct ihe image.

The original (uncompressed) image representation uses 8 bits/pixel. The image consists
ol 256 rows of 230 pixels. so the uncompressed representation uses 65.536 bytes. The
compression tatio is simpiy the ratio o the number of byvites in the uncompressed represen-
tation to the number of bytes in the compressed upruummon The number of bytes in the
compressed representation includes the number of byvtes needed to store the Huffman code.
Notice that the compression ratio is different tor different images. This can cause some
problems in certain applications where it is necessary o know in advance how many bytes
will be needed to represent a particular data set.

The resalts in Table 3.23 are somewhat disappointing because we get a reduction of only

about 1o 1 bit/pixel after corn; pression. For some applications this reduction is acceptable.
For g\:mlpl it we were storing thousands of images in an archive. a reduction of 1 bit/pixcl
saves many megabytes in disk space. However, we can do better, Recall that when we first
talked about compression. we said that the lirst step for any compression algorithm was to
model the data so as 1o make use of the structure in the data. In this case. we have made
absolutely no use of the structure in the dati.

From a visual inspection of the test images. we can clearly see that the pixels in an
image are heavily correlated with their neighbors. We could represent this structure with the
crude model ¥, = v . The residual would be the difference between nei ighboring pixels.
If we carry out Ihl\ dlnumum operation and use the Huffman coder on the residuals. the
results are as shown in Table 3.24. As we can see., using the structure in the data resulted in
substantial improvement.

TABLE 3.24 Compression using Huffman codes on pixel difference values.
Image Name Bits/Pixel Fotal Size (bytes) Compression Ratio
Sena 4.02 32.968 1.99
Sensin 4.70 38.541 1.70
Earth 413 33.880 1.93

Omaha 642 52.643 1.24

74 3 HUFFMAN CODING

TABLE 3.25 Compression using adaptive Huffman codes on pixel difference
valuves.
Image Name Bits/Pixel Total Size (bytes) Compression Ratio
Sena 3.93 32.201 2.03
Sensin 4.63 37.896 1.73
Earth 4.82 39.504 1.66
Omaha 6.39 52.321 1.25

~

The results in Tables 3.23 and 3.24 were obtained using a two-pass system. in which
the statistics were collected in the first pass and a Huffman table was generated. Instead
of using a two-pass system. we could have used a one-pass adaptive Huffman coder. The
results for this are given in Table 3.25.

Notice that there is little difference between the performance of the adaptive Huffman
code and the two-pass Huffman coder. In addition. the fact that the adaptive Huffman
coder can be used as an on-line or real-time coder makes the adaptive Hutfman coder a
more attractive option in many applications. However. the adaptive Huffman coder is more
vulnerable to errors and may also be more difficult to implement. In the end. the particular
application will determine which approach is more suitable.

3.8.2 Text Compression

Text compression seems natural for Huffman coding. In text. we have a discrete alphabet
that. in a given class. has relatively stationary probabilities. For example. the probability
model for a particular novel will not differ significantly from the probability model for
another novel. Similarly. the probability model for a set of FORTRAN programs is not going
to be much different than the probability model for a different set of FORTRAN programs.
The probabilities in Table 3.26 are the probabilitics of the 26 letters (upper- and lowercase)
obtained for the U.S. Constitution and are representative of English text. The probabilities
in Table 3.27 were obtained by counting the frequency of occurrences of letters in an carlier
version of this chapter. While the two documents are substantially different. the two sets of
probabilities are very much alike.

We encoded the earlier version of this chapter using Huffman codes that were created
using the probabilities of occurrence obtained tfrom the chapter. The file size dropped from
about 70.000 bytes to about 43.000 bytes with Huffman coding.

While this reduction in file size is useful. we could have obtained better compression if
we first removed the structure existing in the form of correlation between the symbols in
the file. Obviously. there is a substantial amount of correlation in this text. For example,
Huf is always followed by fman! Unfortunately. this correlation is not amenable to simple
numerical models. as was the case for the image files. However. there are other somewhat
more complex technigues that can be used to rcnqu’/[hc correlation in text files. We will
look more closely at these in Chapters 5 and 6.

3.8 Applications of Huffman Coding 75

TABLE 3. 26 Probabilities of occurrence of the
letters in the English alphabet in the
U.S. Constitution.

Letter Probability Letter Probability
A (.057303 N 0.056035
B 0.014876 0O 0.058215
C 0.023775 P 0.021034
D 0.026811 Q 0.000973
E 0112578 R 0.048%19
F 0.022875 S 0.060289
G 0.009523 T (1L.O78085
H 0.042915 U 0.018474
I 0.053475 ! A% 0.009882
J 0.002031 W 0.007576
K 0.001016 X 0.002264
L 0.031403 i Y 0.011702
M 0.015892 i z 0.001502

TABLE 3. 27 Probabilities of occurrence of the letters
in the English alphabet in this chapter.

Letter Probability Letter Probability
A 0.049855 N 0.048039
B 0.016100 0O 0.050642
C 0.025835 p 0.015007
D 0.030232 Q 0.001509
E 0.097434 R 0.040492
F 0.019754 S 0.0420657
G 0.012053 T 0.061142
H 0.035723 U 0.015794
[0.048783 \ 0.004988
J 0.000394 W 0.012207
K 0.002450 X 0.003413
L 0.025835 Y 0.008466
M 0.016494 4 0.001050

3.8.3 Avdio Compression

Another class of data that is very suitable for compression is CD-quality audio data. The
audio signal for cach stereo channel is sampled at 44.1 kHz. and each sample is represented
by 16 bits. This means that the amount of data stored on one CD is enormous. If we
want to transmit this data. the amount of channel capacity required would be significant.
Compression is definitely useful in this case. In Table 3.28 we show for a variety of audio
material the file size. the entropy. the estimated compressed file size if & Huffman coder is
used. and the resulting compression ratio.

76 3 HUFFMAN CODING

TABLE 3.28 Huffman coding of 16-bit CD-quality audio.

Original Entropy Estimated Compressed Compression
File Name File Size (bytes) (bits) File Size (bytes) Ratio
Mozart 939.862 12.8 725420 1.30
Cohn 402.442 13.8 349.300 1.15
Mir 884,020 13.7 759.540 1.16

The three segments used in this example represent a wide variety of audio material. from
a symphonic piece by Mozart to a folk rock piece by Cohn. Even though the material is
varied. Huffman coding can lead to some reduction in the capacity required to transmit this
material.

Note that we have only provided the estimated compressed file sizes. The estimated
file size in bits was obtained by multiplying the entropy by the number of samples in the
file. We used this approach because the samples of 16-bit audio can take on 65.536 distinct
values, and therefore the Huffman coder would require 65536 distinct (variable-length)
codewords. In most applications. a codebook of this size would not be practical. There
is a way of handling large alphabets. called recursive indexing. that we will describe in
Chapter 9. There is also some recent work [14] on using a Huffman tree in which leaves
represent sets of symbols with the same probability. The codeword consists of a prefix that
specifies the set followed by a suffix that specifies the symbol within the sét. This approach
can accommodate relatively large alphabets.

As with the other applications. we can obtain an increase in compression if we first
remove the structure from the data. Audio data can be modeled numerically. In later chapters
we will examine more sophisticated modeling approaches. For now, let us use the very
simple model that was used in the image-coding example: that is, each sample has the
same value as the previous sample. Using this model we obtain the difference sequence.
The entropy of the difference sequence is shown in Table 3.29.

Note that there is a further reduction in the file size: the compressed file sizes are about
60% of the original files. Further reductions can be obtained by using more sophisticated
models.

Many of the lossless audio compression schemes. including FLAC (Free Lossless
Audio Codec), Apple’s ALAC or ALE, Shorten [33]. Monkey's Audio, and the proposed
(as of now) MPEG-4 ALS [34] algorithms. use a linear predictive model to remove some of

TABLE 3.29 Huffman coding of differences of 16-bit CD-quality audio.

Original Entropy Estimated Compressed ~ Compression
File Name File Size (bytes) of Differences (bits) File Size (bytes) Ratio
Mozart 939.862 9.7 569.792 1.65

Cohn 402,442 10.4 261.590 1.54
Mir 884.020 10.9 602.240 1.47

3.10 Projects and Problems 77

the structure from the audio sequence and then use Rice coding to encode the residuals. Most
others, such as AudioPak [35] and OggSquish. use Huffman coding to encode the residuals.

3.9 Summary

In this chapter we began our exploration of data compression techniques with a description
of the Huffman coding technique and several other related techniques. The Huffman coding
technique and its variants are some of the most commonly used coding approaches. We will
encounter modified versions of Huffman codes when we look at compression techniques
for text. image. and video. In this chapter we described how to design Huffman codes and
discussed some of the issues related to Huffman codes. We also described how adaptive
Huffman codes work and looked briefly at some of the places where Huffman codes are
used. We will see more of these in future chapters.

To explore further applications of Huffman coding. you can use the programs
huff_enc. huff_dec. and adap_huff to generate your own Huffman codes for your
favorite applications.

1. A detailed and very accessible overview of Huffman codes is provided in “Huftman
Codes.” by S. Pigeon [36]. in Lossless Compression Handbook.

2. Details about nonbinary Huffman codes and a much more theoretical and rigor-
ous description of variable-length codes can be found in The Theory of Informa-
tion and Coding. volume 3 of Encvclopedia of Mathematic and Its Application. by
R.J. McEliece [6].

3. The wtorial article “Data Compression™ in the September 1987 issue of ACM Com-
puting Surveys, by D.A. Lelewer and D.S. Hirschberg [37], along with other material.
provides a very nice brief coverage of the material in this chapter.

4. A somewhat different approach to describing Huffman codes can be found in Data
Compression—Methods and Theory, by J.A. Storer [38)].

5. A more theoretical but very readable account of variable-length coding can be found
in Elements of Information Theory, by T.M. Cover and J.A. Thomas [3].

6. Although the book Coding and Information Theory, by R.W. Hamming [9]. is mostly
about channel coding, Huffman-codes are described in some detail in Chapter 4.

3.10 Projects and Problems
1. The probabilities in Tables 3.27 and 3.27 were obtained using the program

countalpha from the accompanying software. Use this program to compare prob-
abilities for different types of text. C programs, messages on Usenet, and so on.

78

3 HUFFMAN CODING

Comment on any differences you might see and describe how you would tailor your
compression strategy for each type of text.

Use the programs huff_enc and huff_dec to do the following (in each case use
the codebook generated by the image being compressed):

{a) Code the Sena. Sinan. and Omaha images.

{(b) Write a program to take the difference between adjoining pixels. and then use
huffman to code the difference images.

{c¢} Repeat (a) and (b) using adap_huff.

Report the resulting file sizes tor each of these experiments and comment on the
differences.

Using the programs huff_enc and huff_dec. code the Bookshelfl and Sena
images using the codebook generated by the Sinan image. Compare the results with
the case where the codebook was generated by the image being compressed.

A source emits letters from an alphabet A = {a,.a>. a;. a,. as} with probabilities
P(a,) =0.15, P(a,) =0.04, P(ay) = 0.20. Play) = 0.05, and Plas) = 0.50.

{a) Calculate the entropy of this source.
{b) Find a Huffman code tor this source.
{¢) Find the average length of the code in (b) and its redundancy.

For an alphabet A = {«a,, d-. as, a,} with probabilities P(a,) = 0.1. P(a,y) = 0.3,
P(ay) = 0.25. and P(ay) = 0.35. find a Huffman code

(a) using the first procedure outlined in this chapter, and
(b) using the minimum variance procedurc.
Comment on the difference in the Huffman codes.

In many communication applications. it is desirable that the number of Is and Os
transmitted over the channel are about the same. However, it we look at Huffman
codes. many of them seem to have many more 1s than Os or vice versa. Does this
mean that Huffman coding will lead to inefficient channel usage? For the Huffman
code obtained in Problem 3. find the probability that a O will be transmitted over the
channel. What does this probability say about the question posed above?

For the source in Example 3.3.1. generate a ternary code by combining three letters in
the first and second steps and two letters in the third step. Compare with the ternary
code obtained in the example.)

In Example 3.4.1 we have shown how the tree develops when the sequence v a r d v
is transmitted. Continue this example with the next letters in the sequence. a r k.

The Monte Carlo approach is often used for studying problems that are difficult to
solve analytically. Let’s use this approach to study the problem of buffering when

3.10 Projects and Problems 79

10.

12.

using variable-length codes. We will simulate the situation in Example 3.2.1, and
study the time to overflow and underflow as a function of the buffer size. In our
program. we will nced a random number generator. a set of seeds to initialize the
random number generator, a counter B to simulate the buffer occupancy. a counter T
to keep track of the time. and a value N. which is the size of the buffer. Input to the
butfer is simulated by using the random number generator to select a letter from our
alphabet. The counter B is then incremented by the length of the codeword for the
letter. The output to the buffer is simulated by decrementing B by 2 except when T is
divisible by 5. For values of T divisible by 5. decrement B by 3 instead of 2 (why?).
Keep incrementing 7. cach time simulating an input and an output. until either B > N.
corresponding to a buffer overflow. or B < 0. corresponding to a buffer undertlow.
When either of these events happens. record what happened and when, and restart the
simulation with a new seed. Do this with at least 100 seeds.

Perform this simulation for a number of buffer sizes (N = 100. 1000, 10.000), and the
two Huffman codes obtained for the source in Example 3.2.1. Describe your results
In a report.

While the variance of lengths is an important consideration when choosing between
two Huffman codes that have the same average lengths. it is not the only consideration.
Another consideration is the ability to recover from errors in the channel. In this
problem we will explore the effect of error on two equivalent Huffman codes.

{a) For the source and Huffman code of Example 3.2.1 {Table 3.5). encode the
sequence

a> dy dy ds a, d,

Suppose there was an error in the channel and the first bit was received as a 0
instead of a 1. Decode the received sequence of bits. How many characters are
)

received in error before the first correctly decoded character?
(b) Repeat using the code in Table 2.9,
(e} Repeat parts (a) and (b) with the crror in the third bit.

(This problem was suggested by P.F. Swaszek.)

{a) Fora binary source with probabilities P(0) = 0.9. P(1) = 0.1. design a Huffman
code for the source obtained by blocking m bits together. m= 1.2, 8. Plot
the average lengths versus m. Comment on vour result.

{b) Repeat for P(0) = 0.99. P(1) =0.01.
You can use the program huff_enc to generate the Huftman codes.

Encode the following sequence of 16 values using the Rice code with J = 8 and one
split sample option.

80

13.

14.

3 HUFFMAN CODING

For prediction use the previous value in the sequence

Yi =i

and assume a prediction of zero for the first element of the sequence.

For an alphabet A = {a,. a.. a5} with probabilities P(a,) =0.7. P(a,) =0.2. P(a;) =
0.1, design a 3-bit Tunstall code.

Write a program for encoding images using the Rice algorithm. Use eight options.
including the fundamental sequence, five split sample options, and the two low-entropy
options. Use J = 16. For prediction use either the pixel to the left or the pixel above.
Encode the Sena image using your program. Compare your results with the results
obtained by Huffman coding the differences between pixels.

Arithmetic Coding

4.1 Overview

o n the previous chapter we saw one approach to generating variable-length
codes. In this chapter we see another. increasingly popular. method of gen-
erating variable-length codes called arithmetic coding. Arithmetic coding is
especially useful when dealing with sources with small alphabets, such as

¥ ___ibinary sources, and alphabets with highly skewed probabilities. It is also a very
useful approach when. for various reasons, the modeling and coding aspects of lossless com-
pression are to be kept separate. In this chapter, we look at the basic ideas behind arithmetic
coding. study some of the properties of arithmetic codes, and describe an implementation.

4.2 Introduction

In the last chapter we studied the Huffman coding method. which guarantees a coding rate
R within | bit of the entropy H. Recall that the coding rate is the average number of bits
used to represent a symbol from a source and. for a given probability model. the entropy is
the lowest rate at which the source can be coded. We can tighten this bound somewhat. It
has been shown [23] that the Huffman algorithm will generate a code whose rate is within
P +0.086 of the entropy, where p,., 1s the probability of the most frequently occurring
symbol. We noted in the last chapter that. in applications where the alphabet size is large.
Poue 18 generally quite small. and the amount of deviation trom the entropy. especially in
terms of a percentage of the rate. is quite small. However. in cases where the alphabet is
small and the probability of occurrence of the different letters is skewed. the value of p,..,
can be quite large and the Huffman code can become rather inefficient when compared to
the entropy. One way to avoid this problem 1s to block more than one symbol together and
generate an extended Hutfman code. Unfortunately. this approach does not always work.

82 4 ARITHMETIC CODING

Example 4.2.1:

Consider a source that puts out independent. identically distributed (7idd) Tetters from the
alphabet A = {a, . a.. ;] with the probability model P(a,) = 0.95. P(a.) = 0.02. and
Pla) = 0.03. The entropy for this source is 0.335 bits/symbol. A Huffman code for this
source 18 given in Table 4.1,

TABLE 4.1 Huffman code for
three-letter alphabet.

Letter Codeword
(i| 0
",‘ | l
[N 10

The average length for this code 15 1.05 bits/symbol. The difterence between the average
code length and the entropy. or the redundancy. tor this code is 0.715 bits/symbol, which is
213% of the entropy. This means that 1o code this sequence we would need more than twice
the number of bits promised by the entropy.

Recall Example 3.2.4. Here also we can group the symbols in blocks of two. The extended
alphabet. probubility model. and code can be obtained as shown in Table 4.2. The average
rate for the extended alphabet 1s 1.222 bits/symbol. which in terms of the original alphabet is
0.611 bits/symbol. As the entropy of the source is .335 bits/symbol. the additional rate over
the entropy is still about 729% of the entropy! By continuing to block symbols together. we
find that the redundancy drops to acceptable values when we block eight symbols together.
The corresponding alphabet size for this level of blocking is 656011 A code of this size
is impractical for a number of reasons. Storage of a code like this requires memory that
may not be availuble for many applications. While it may be possible to design reasonably
citicient encoders, decoding a Huffman code of this size would be a highly inefficient and
time-consuming procedure. Finallv, if there were some perturbation in the statistics, and
some of the assumed probabilities changed slightly. this would have a major impact on the
ctficiency of the code.

TABLE 4.2 Huffman code for extended alphabet.

l.etier Probability Code
didy 0.9023 0

(s (.0190 111
gy (.0283 100
aa 0.0190 1101
dasds 0.000-4+ OO
sy (3.00006 OO0
da.d, 0.0283 101
e 0.0000 [10010
iy 0.0009 110000

4.3 Coding a Sequence 83

We can see that it is more efficient to generate codewords for groups or sequences of
symbols rather than generating a separate codeword for each symbol in a sequence. However.
this approach becomes impractical when we try to obtain Huffman codes for long sequences
of symbols. In order to find the Huffman codeword for a particular sequence of length m.
we need codewords for all possible sequences of length 1. This fact causes an exponential
growth in the size of the codebook. We nced a way of assigning codewords to particular
sequences without having to generate codes for all sequences of that length. The arithmetic
coding technique fulfills this requirement.

In arithmetic coding a unique identifier or tag is generated for the sequence to be
encoded. This tag corresponds to a binary fraction. which becomes the binary code for the
sequence. In practice the generation of the tag and the binary code are the same process.
However. the arithmetic coding approach is easier to understand if we conceptually divide
the approach into two phases. In the first phase a unique identifier or tag is generated for a
given sequence of symbols. This tag is then given a unique binary code. A unique arithmetic
code can be generated for a sequence of length m without the need for generating codewords
for all sequences of length m. This is unlike the situation for Huffman codes. In order to
generate a Huffman code for a sequence of length m. where the code is not a concatenation
of the codewords for the individual symbols. we need to obtain the Huffman codes for all
sequences of length m.

4.3 Coding a Sequence

In order to distinguish a sequence of symbols from another sequence of symbols we need
to tag it with a unique identifier. One possible set of tags for representing sequences of
symbols are the numbers in the unit interval [0. 1). Because the number of numbers in the
unit interval is infinite. it should be possible to assign a unique tag to each distinct sequence
of symbols. In order to do this we need a function that will map sequences of symbols into
the unit interval. A function that maps random variables. and sequences of random variables.
into the unit interval is the cumulative distribution function (cdf) of the random variable
associated with the source. This is the function we will use in developing the arithmetic
code. (If you are not familiar with random variables and cumulative distribution functions,
or need to refresh your memory. you may wish to look at Appendix A.)

The use of the cumulative distribution function to generate a binary code for a sequence
has a rather interesting history. Shannon. in his original 1948 paper |7]. mentioned an
approach using the cumulative distribution function when describing what is now known as
the Shannon-Fano code. Peter Elias. another member of Fano's first information theory class
at MIT (this class also included Huffman). came up with a recursive implementation for this
idea. However. he never published it. and we only know about it through a mention in a 1963
book on information theory by Abramson [39]. Abramson described this coding approach in
a note 1o a chapter. In another book on information theory by Jelinek [40] in 1968, the idea of
arithmetic coding is further developed. this time in an appendix. as an example of variable-
length coding. Modern arithmetic coding owes its birth to the independent discoveries in
1976 of Pasco [41] and Rissanen [42] that the problem of finite precision could be resolved.

84 4 ARITHMETIC CODING

Finally. several papers appeared that provided practical arithmetic coding algorithms. the
most well known of which is the paper by Rissanen and Langdon [43].

Before we begin our development of the arithmetic code. we need to establish some
notation. Recall that a random variable maps the outcomes. or sets of outcomes. of an
experiment to values on the real number line. For example. in a coin-tossing experiment, the
random variable could map a head to zero and a tail to one (or it could map a head to 2367.5
and a tail to —192). To use this technique. we need to map the source symbols or letters to
numbers. For convenience, in the discussion in this chapter we will use the mapping

X(a,) =i a, €A 4.1)

where A={a,.a,..... a,,} is the alphabet for a discrete source and X is a random variable.
This mapping means that given a probability model ? for the source. we also have a
probability density function for the random variable

P(X =i)= P(a,)

and the cumulative density function can be defined as

Fe(i) =Y P(X = k).

k=1

Notice that for each symbol a, with a nonzero probability we have a distinct value of Fy(i).
We will use this fact in what follows to develop the arithmetic code. Our development may
be more detailed than what you are looking for. at least on the first reading. If so. skip or
skim Sections 4.3.1-4.4.1 and go directly to Section 4.4.2.

4.3.1 Generating a Tag

The procedure for generating the tag works by reducing the size of the interval in which the
tag resides as more and more elements of the sequence are received.

We start out by first dividing the unit interval into subintervals of the form
[Fei—= 1) Fy(i)). i=1..... m. Because the minimum value of the c¢df s zero and the
maximum value is one, this exactly partitions the unit interval. We associate the subin-
terval [Fy(i — 1), Fy(i)) with the symbol «,. The appearance of the first symbol in the
sequence restricts the interval containing the tag to one of these subintervals. Suppose the
first symbol was ;. Then the interval containing the tag value will be the subinterval
[Fy(k—=1). F¢(k)). This subinterval is now partitioned in exactly the same proportions as
the original interval. That is. the jth interval corresponding to the symbol a, is given by
[Fyolk = 1)+ Fy (= D/(F(k) = Fo(k = 1) Fotk = 1)+ Fy () /(Fo(k) — Fo(k— 1)), So if
the second symbol in the sequence is a,. then the interval containing the tag value becomes
[Fetk= 1)+ Folj = 1)/ (Fek) = Fy(k = 1)) Fotk = 1)+ Fe()/(Fy (k) = Fo(k = 1))). Each
succeeding symbol causes the tag to be restricted to a subinterval that is further partitioned
in the same proportions. This process can be more clearly understood through an example.

4.3 Coding a Sequence 85

Example 4.3.1:

Consider a three-letter alphabet A4 = {a,. a.. a:} with P(«,) =0.7. P{as) =0.1. and P(a;) =
(.2, Using the mapping of Equation (4.1). F (1) =0.7. F(2) =0.8. and F((3) = 1. This
partitions the unit interval as shown in Figure 4.1.

0.0 » 0.00 0.490 0.5460

a a, / a a,

0.7 - 0.49 0.539 — / 0.5558 —
(25] [s ds
08— - 0.56 R} 0.546 f - 0.55724 -
\\
. \
U, \ a, \ N as
1.0 0.70 0560 . 10.5600
FIGURE 4. 1 Restricting the interval containing the tag for the input sequence

{ay, ay,a;, ..}

The partition in which the tag resides depends on the first symbol of the sequence being
encoded. For example. if the first symbol is a,. the tag lies in the interval [0.0.0.7):if the
first symbol is .. the tag lies in the interval [0.7.0.8): and if the first symbol is «;. the
tag lies in the interval [0.8. 1.0). Once the interval containing the tag has been determined.
the rest of the unit interval is discarded. and this restricted interval is again divided in the
same proportions as the original interval. Suppose the first symbol was «,. The tag would be
contained in the subinterval [0.0. 0.7). This subinterval is then subdivided in exactly the same
proportions as the original interval. yielding the subintervals [0.0.0.49). [0.49.0.56). and
[0.56.0.7). The first partition as before corresponds to the symbol «,. the second partition
corresponds to the symbol «-. and the third partition [0.56.0.7) corresponds to the symbol
day. Suppose the second symbol in the sequence is a.. The tag value is then restricted to
lic in the interval [0.49.0.56). We now partition this interval in the same proportion as
the original interval to obtain the subintervals [0.49.0.539) corresponding to the symbol
ay. 10.539.0.546) corresponding to the symbol a,. and [0).546.0.56) corresponding to the
symbol «;. If the third symbol is a,. the tag will be restricted to the interval [0.546.0.56).
which can then be subdivided further. This process is described graphically in Figure 4.1.

Notice that the appearance of each new symbol restricts the tag to a subinterval that is
disjoint from any other subinterval that may have been generated using this process. For

86 4 ARITHMETIC CODING

the sequence beginning with {a,. a,. a5, ...}. by the time the third symbol a, is received,
the tag has been restricted to the subinterval [0.546, 0.56). If the third symbol had been a,
instead of a,. the tag would have resided in the subinterval [0.49,0.539), which is disjoint
from the subinterval [0.546.0.56). Even if the two sequences are identical from this point
on (one starting with a,, a,. a5 and the other beginning with a,. a,. a,), the tag interval for
the two sequences will always be disjoint. ¢

As we can see, the interval in which the tag for a particular sequence resides is disjoint
from all intervals in which the tag for any other sequence may reside. As such, any member
of this interval can be used as a tag. One popular choice is the lower limit of the interval;
another possibility is the midpoint of the interval. For the moment. let’s use the midpoint of
the interval as the tag.

In order to see how the tag generation procedure works mathematically, we start with
sequences of length one. Suppose we have a source that puts out symbols from some

alphabet A = {a,, a,..... a,}. We can map the symbols {a,} to real numbers {i}. Define
Tyla,) as
B i—1 1
Tela) = Y P(X=k)+=P(X=i) (4.2)
k=1 -
. 1
=Fi—D+sPX =) (4.3)

For each a;, T(a,) will have a unique value. This value can be used as a unique tag for a,.

Example 4.3.2:
Consider a simple dice-throwing experiment with a fair die. The ()utb()mcs of a roll of the
die can be mapped into the numbers {1.2. ..., 6}. For a fair die
l .
P(X:k):a fork=1.2,...,6.
Therefore, using (4.3) we can find the tag for X =2 as

T2 =PX=1)+-P(X=2)=

and the tag for X =5 as

Kl
T (5) =Y P(X=k)+ %P(X =35)=0.75.

k=1

The tags for all other outcomes are shown in Table 4.3,

